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Motivation

* In a magnetic field, electrons occupy states known as Landau Levels (LLs)
* These states exhibit interesting behaviors such as quantized transport properties

* When interactions with the lattice become significant (e.g. an insulator)
electrons occupy non-LL states whose behavior differs from that of LLs

e Can probe electronic properties that are obscured by the high symmetry of LLs
* Here: a model where lattice effects eliminate quadratic momentum dependence

H x p? —> H x p?

* By understanding the behavior of models we can place, frame, and inspire
the engineering of materials with novel properties and applications



Lorentz Force Law

* Charged particles experience forces in E and B fields
F=ma F=qF+quix B

* Cyclotron motion A + |B




Landau Levels
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H Landau Levels in a Perpendicular Magnetic Field

e Select vector potential A= (0, Bx,0), then:
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Tight-Binding Models

* We saw a metal-insulator transition
* Only the occupied LLs are conducting

* Analysis before only considers
behavior in an electron gas (metal)

* Tight-binding models consider
electrons attached to orbitals of
atoms in a solid (insulator)

* Study behavior across the transition




Hofstadter 'Butterfly' in a Perpendicular Magnetic Field

Hofstadter Model

* Lattice with nearest-neighbor hoppings

Energy (t)

- Select vector potential A = (0, Bx, 0)
e Quadratic in momenta to lowest order

H = 2t(cos(K,) + cos(K))
~ —4t + (K2 + KS)
* Energy is linear in magnetic field (if the magnetic field is small)

E, = —4t + 2t(eBa*/h)(n + %)

Magnetic Field (eBa%/h)

Hofstadter, PRB 14, 2239 (1976).
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* Next-nearest-neighbor hoppings too
* Hamiltonian is quartic in momenta :

H = 2t(cos(K,) + cos(K,))
— 2t(cos(2K,) + cos(2Ky)) =

~ _Bt lt K4 K4 + \)12 Maog;ietic Field (eB(;jZB/h) o8
—|_ 4 ( * _l_ y) Quadraticin B
e Energy is quadratic in magnetic field (if the magnetic field is small)

E, = =3t + =t(eBa’/h)*[12(n + 1)? + 3]



How to Study This Phase Transition?

* Metal insulator phase transition
* Electrons are exponentially localized around position 7

(P(ro)|(r)) o< e IT=rol/¢

* ‘Localization length’ parameter ¢ determines how metallic/insulating

* Calculate ¢ as a function of B, or as a function of Fermi energy

* Transfer matrices
* Lyapunov exponents

 Describe how ¢ varies around phase transition

Pichard and Sarma, JPC 14, 127 (1981)
MacKinnon and Kramer, PRL 47, 1546 (1981)



Localization Length Dependence on Energy
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Resuy |tS Critical Exponent is Independent of NNN Hopping

N 260 - Chalker-Coddington Model (Obuse 2012)
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Conclusion

* Electrons exhibit a wide variety of behaviors, some of which are
leveraged to enable device technologies

* Here we consider electrons in a magnetic field subject to lattice effects
* H, lattice effects eliminate the quadratic dependence of the Hamiltonian

* These zero quadratic states can be used in fractional quantum Hall
physics as basis states for quasipartical “droplets”, which may be
braided to encode quantum information

* These states enable the geometrical degree of freedom of the droplets to be
leveraged, and which could lead to greater control of the encoded information

* We find that the phase transitions between zero quadratic states are
indistinguishable from those of quadratic states
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Form of the K operators

In the presence of the magnetic field, the naive trans-
lation operators do not transform correctly under gauge
transformations [2], and we must accompany translations
by compensatory gauge transformations. The translation
operators with the appropriate transformation properties
are a sum over lattice sites

Ta = Z ewa(m)cjn+eacm' (1)

m

where the phases e?«(") satisfy

01(m) + O2(m +e1) — 01 (m + e2) — O2(m) = ¢.  (2)

The components of T" do not commute, but satisfy
T.T, = exp(i9)T, T (3)

The lattice translation operators 7, are unitary, so we
can write them in terms of Hermitian generators T, =
exp(iK,). The K, are the lattice analogues of the co-
variant momentum operators m,, and we will sometimes
call them momenta for brevity. These operators have the
commutator

[KxaKy] = ¢. (4)



Hall Effect

* Two dimensional sample
» With electric and magnetic fields
E = Egx B = Byz

e Classical Limit (small B, large T)
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Why tz —

—1/4

As in Section IT A, we write this in terms of the Her-
mitian generators of lattice translations,

Hrp = — 2(cos(K,) + cos(Ky))
— 2t3 (cos(2K;) + cos(2K,)) (19)

Replacing the cosine terms by their Taylor expansion, the
terms lowest-order in the momenta are

2 2
Hrp = —4 — 4ty + (1 + 4t2) (K7 + K})

= <1—12 + §t2> (K; X K,)+... (20)

1+4t2 == 0
iftz == —1/4—



Transfer Matrices

* [teratively solve Schrodinger Equation

042 041
r+1) ¢

¢ | =4y
01 ¢—9

e Use the matrix

Rearranging, we find that

(t1/t2)1 (Hy — E1)/ty (t1/t2)1 1

B 1 0 0 0
A= 0 1 0 0 (74)

0

0 0 1

Where the intra-layer Hamiltonian is, where m = (¢, w),

'HE = (Z efawaz,wazs'w) - tl(TUve + le,f) - tZ(Tl‘ié +

with the intra-layer translation operators

_ —i(2md/do)l T
Tye= E e Ap i1 @l w-
w



Localization Length

* QR Decomposition (eigenvalues)

Thus, the component of the wavefunction in the last
layer is given in terms of the wavefunction in the first
layer as [57-60)]

L) = (H Ae) 1) = (QL HRF) 1), (75)

* Localization length from most conductive state (via Lyapunov Exponent)

Now, the localization-length is related to the the trans-
fer matrix through the set of Lyapunov exponents 7,
[57-60]:

1
= N 76
¢ ming, Y| 76)
Where Lyapunov exponents are given by the sum of the
eigenvalues of A, (diagonal elements of Ry) scaled by the
logarithm,

L
1 w,w
Yo =T g In|R, )|. (77)
=1



