Motivation and Introduction

In crystalline materials comprised of relatively well localized orbitals or Wannier functions, the tight binding description is appropriate. In this description, orbitals $|n\rangle$ are chosen to occupy a specific location r_{n} in space and electronic conduction is mediated by a hopping term $t\left(r_{n}-r_{m}, \sigma_{n}, \sigma_{m}\right)$ between these orbitals. Here σ_{n} describes spin and other non-location characteristics of the orbital $|n\rangle$. The tight binding model is then expressed in real space as

$$
H_{\mathrm{TB}}=-\sum_{\text {sites } n, m ; \text { unit cells } i, j}\left(t\left(r_{n, i}-r_{m, j}\right) c_{n, i}^{\dagger} c_{m, j}+t\left(r_{m, j}-r_{n, i}\right) c_{m, j}^{\dagger} c_{n, i}\right)
$$

where for simplicity we suppress any dependence on σ_{n} since this only changes the value of t. The leading negative sign is used to indicate that this is a model of bound electrons. The i and j indices correspond to translations by lattice vectors $\alpha a_{1}+\beta a_{2}$.

Now, this can be taken to momentum space using

$$
c_{n, i}^{\dagger}=\frac{1}{\sqrt{\# \text { of sites } / N}} \sum_{k} e^{i k \cdot r_{n, i}} c_{n, k}^{\dagger}
$$

where N is the number of sites in the unit cell. Substituting in we find

$$
\begin{aligned}
& H_{\mathrm{TB}}=-\frac{1}{\# \text { of sites } / N} \sum_{\text {sites } n, m ; \text { unit cells } i, j} \sum_{k, k^{\prime}}\left(t\left(r_{n, i}-r_{m, j}\right) e^{i k \cdot r_{n, i}} e^{-i k^{\prime} \cdot r_{m, j}} c_{n, k}^{\dagger} c_{m, k}\right. \\
&\left.+t\left(r_{m, j}-r_{n, i}\right) e^{i k^{\prime} \cdot r_{m, j}} e^{-i k \cdot r_{n, i}} c_{m, k}^{\dagger} c_{n, k}\right) \\
&=-\sum_{\text {sites } n, m ; \text { unit cells } i} \sum_{k}\left(t\left(d_{n m}+d_{i}\right) e^{-i k \cdot\left(d_{n m}+d_{i}\right)} c_{n, k}^{\dagger} c_{m, k}\right. \\
&\left.+t\left(d_{m n}+d_{i}\right) e^{i k \cdot\left(d_{m n}+d_{i}\right)} c_{m, k}^{\dagger} c_{n, k}\right)
\end{aligned}
$$

where we used the delta function identity

$$
\frac{1}{\# \text { of sites } / N} \sum_{\text {sites; unit cells }} \sum_{k, k^{\prime}} e^{i\left(k-k^{\prime}\right) \cdot r_{\alpha}}=\delta\left(k-k^{\prime}\right)
$$

for some indices α. Here $d_{n m}=r_{n, i}-r_{m, i}$ is the vector between sites n and m in the same unit cell, and d_{i} is the vector from the unit cell the electrons start in to the unit cell they end up in.

Bipartite Lattice: Monolayer Graphene

Graphene's lattice is bipartite consisting of an "A" sublattice and a " B " sublattice - see Fig 1.

Fig 1. Structure of monolayer graphene. Unit cell is outlined in black. The distance between nearest neighbor sites of the same color is 0.246 nm , while the distance between nearest neighbor sites of different colors is 0.142 nm .

Now, the hopping term is then given by

$$
t(|\vec{r}|)= \begin{cases}2.7 \mathrm{eV}, & |\vec{r}|=a_{0} \\ 0 \mathrm{eV}, & |\vec{r}| \neq a_{0}\end{cases}
$$

which is only non-vanishing for nearest-neighbor hopping terms. So, summing over all terms that are non-zero we find

$$
\begin{aligned}
H_{N N} & =-\sum_{k}\left(t\left(d_{1}\right) e^{-i k \cdot d_{1}}+t\left(d_{2}\right) e^{-i k \cdot d_{2}}+t\left(d_{3}\right) e^{-i k \cdot d_{3}}\right) a_{k}^{\dagger} b_{k}+\left(t\left(d_{1}\right) e^{i k \cdot d_{1}}+t\left(d_{2}\right) e^{i k \cdot d_{2}}+t\left(d_{3}\right) e^{i k \cdot d_{3}}\right) b_{k}^{\dagger} a_{k} \\
& =-2.7 \sum_{k}\left(e^{-i k \cdot d_{1}}+e^{-i k \cdot d_{2}}+e^{-i k \cdot d_{3}}\right) a_{k}^{\dagger} b_{k}+\left(e^{i k \cdot d_{1}}+e^{i k \cdot d_{2}}+e^{i k \cdot d_{3}}\right) b_{k}^{\dagger} a_{k}
\end{aligned}
$$

Or in matrix form
$H_{N N}(k)=\left(\begin{array}{cc}\langle a| H_{N N}(k)|a\rangle & \langle a| H_{N N}(k)|b\rangle \\ \langle b| H_{N N}(k)|a\rangle & \langle b| H_{N N}(k)|b\rangle\end{array}\right)=-2.7\left(\begin{array}{cc}0 & e^{-i k \cdot d_{1}}+e^{-i k \cdot d_{2}}+e^{-i k \cdot d_{3}} \\ e^{i k \cdot d_{1}}+e^{i k \cdot d_{2}}+e^{i k \cdot d_{3}} & 0\end{array}\right)$
We can then plot the band structre. See Fig 2.

Fig 2. Energy bands on nearest neighbor hopping graphene model along the $\Gamma-K$ line.

Polypartite Lattice: Twisted Bilayer Graphene

As before, for N sites in the unit cell there is a corresponding N-band model that is given by a Hamiltonian that is $N \times N$ and is given by the sum over hops between sites in the unit cell

$$
H=\sum_{\text {atoms in unit cell: } l, m} H_{l m}
$$

The term between sites l and m is

$$
\begin{aligned}
H_{l m} & =-\sum_{\text {unit cells: }} t\left(r_{j}-r_{i}\right)\left(l_{i}^{\dagger} m_{j}+m_{j}^{\dagger} l_{i}\right) \\
& \approx-\sum_{\text {unit cells: }} \sum_{i \alpha, \beta=-1,0,1} t\left(\left(r_{i}+d_{l m}+\alpha a_{1}^{M}+\beta a_{2}^{M}\right)-r_{i}\right)\left(l_{i}^{\dagger} m_{r_{i}+d_{l m}+\alpha a_{1}^{M}+\beta a_{2}^{M}}+m_{r_{i}+d_{l m}+\alpha a_{1}^{M}+\beta a_{2}^{M}}^{\dagger} l_{i}\right)
\end{aligned}
$$

where we approximate the sum as going over nearest neighboring unit cells (see Fig 3). If desired, we could sum over more unit cells. $d_{l m}$ is the distance between sites l and m in the unit cell, and l_{i} is the annihilation operator of an electron on an l orbital at position r_{i}.

Fig 3. To sum over the relevant range it is necessary to sum over neighboring unit cells.
Substituting the momentum-space representation and evaluating the resulting delta function we obtain

$$
H_{l m} \approx-\sum_{k} \sum_{\alpha, \beta=-1,0,1} t\left(d_{l m}+\alpha a_{1}^{M}+\beta a_{2}^{M}\right) e^{-i k \cdot\left(d_{l m}+\alpha a_{1}^{m}+\beta a_{2}^{M}\right)} l_{k}^{\dagger} m_{k}+h . c .
$$

Now, if we have an expression for $t(r)$ and the atomic positions then we can calculate the band structure. Let's do this. In the Appendix, the atomic positions are listed for p_{z} orbitals in largetwist angle commensurate TBG, and we use the model in Nano Lett. 10, 804 (2010):

$$
t(\vec{r})= \begin{cases}V_{p p \pi}^{0} e^{-\left(|\vec{r}|-a_{0}\right) / \delta_{0}}\left(1-\left(\frac{\vec{r} \cdot e_{z}}{|\vec{r}|}\right)^{2}\right)+V_{p p \sigma}^{0} e^{-\left(|\vec{r}|-d_{0}\right) / \delta_{0}}\left(\frac{\vec{r} \cdot e_{z}}{|\vec{r}|}\right)^{2}, & |\vec{r}| \leq 4 a_{0} \\ 0, & |\vec{r}|>4 a_{0}\end{cases}
$$

Where the parameters are given by

$$
\begin{aligned}
e_{z} & =(0,0,1) \\
a_{0} & =a / \sqrt{3}=0.142 \mathrm{~nm} \\
d_{0} & =0.335 \mathrm{~nm} \\
\delta_{0} & =0.184 a=0.0453 \mathrm{~nm} \\
V_{p p \pi}(|\vec{r}|) & =2.7 \mathrm{eV} \\
V_{p p \sigma}(|\vec{r}|) & =-0.48 \mathrm{eV}
\end{aligned}
$$

We can now use this to plot the band structure of twisted bilayer graphene; see Fig 4.

Tight Binding Model of LA-TBG at 21.78°

FIG 4. Band structure of large twist angle commensurate TBG using 28-band tight-binding model; note that K and M are rotated by $\theta / 2$ relative to monolayer graphene. Compare to

Figure 9(c) of Phys. Rev. B 87, 205404 (2013)

Appendix: Atomic Positions in $\sqrt{7} \times \sqrt{7}$ Commensurate TBG

Here are the (unrelaxed) atomic positions for a twist angle of 21.78°, corresponding to a $\sqrt{7} \times \sqrt{7}$ commensurate unit cell (distances are in nm):

[0.	$0 . \quad$ 0.],	[0.21304225,	0.123	0.
[0.21304225,	0.369 , 0.],	[0.4260845	0.246	0.
[0.4260845	0.492 , 0.],	[0.63912675,	0.369	0.
[0.63912675,	0.615 , 0.],	[0.07101408,	0.123	0.
[0.28405633,	0.246 , 0.],	[0.49709858,	0.123	0.
[0.28405633,	0.492 , 0.],	[0.49709858,	0.369	0.
[0.49709858,	0.615 , 0],	[0.71014083,	0.492	0.
[0.	$0 . \quad$, 0.335],	[0.15217304,	0.19328571,	0.335
[0.39564989,	0.15814286, 0.335],	[0.30434607,	0.38657143 ,	0.335
[0.54782293,	0.35142857, 0.335],	[0.45651911,	0.57985714 ,	0.335
[0.69999596,	0.54471429, 0.335],	[0.26376659,	0.10542857 ,	0.335
[0.17246277,	0.33385714, 0.335],	[0.41593963,	0.29871429,	0.335
[0.65941649,	0.26357143, 0.335],	[0.32463581,	0.52714286 ,	0.335
[0.56811266,	0.492 , 0.335],	[0.7202857	0.68528571 ,	0.335

