
Introduction to Tight-Binding Models with Applications to TBG 28 October 2022

Motivation and Introduction

In crystalline materials comprised of relatively well localized orbitals or Wannier functions, the tight
binding description is appropriate. In this description, orbitals |n⟩ are chosen to occupy a specific
location rn in space and electronic conduction is mediated by a hopping term t(rn − rm, σn, σm)
between these orbitals. Here σn describes spin and other non-location characteristics of the orbital
|n⟩. The tight binding model is then expressed in real space as

HTB = −
∑

sites n,m; unit cells i,j

(
t(rn,i − rm,j)c

†
n,icm,j + t(rm,j − rn,i)c

†
m,jcn,i

)

where for simplicity we suppress any dependence on σn since this only changes the value of t. The
leading negative sign is used to indicate that this is a model of bound electrons. The i and j indices
correspond to translations by lattice vectors αa1 + βa2.

Now, this can be taken to momentum space using

c†n,i =
1√

# of sites/N

∑
k

eik·rn,ic†n,k

where N is the number of sites in the unit cell. Substituting in we find

HTB = − 1

# of sites/N

∑
sites n,m; unit cells i,j

∑
k,k′

(
t(rn,i − rm,j)e

ik·rn,ie−ik′·rm,jc†n,kcm,k

+t(rm,j − rn,i)e
ik′·rm,je−ik·rn,ic†m,kcn,k

)
= −

∑
sites n,m; unit cells i

∑
k

(
t(dnm + di)e

−ik·(dnm+di)c†n,kcm,k

+t(dmn + di)e
ik·(dmn+di)c†m,kcn,k

)
where we used the delta function identity

1

# of sites/N

∑
sites; unit cells

∑
k,k′

ei(k−k′)·rα = δ(k − k′)

for some indices α. Here dnm = rn,i − rm,i is the vector between sites n and m in the same unit
cell, and di is the vector from the unit cell the electrons start in to the unit cell they end up in.

1



Bipartite Lattice: Monolayer Graphene

Graphene’s lattice is bipartite consisting of an “A” sublattice and a “B” sublattice—see Fig 1.

Fig 1. Structure of monolayer graphene. Unit cell is outlined in black. The distance between
nearest neighbor sites of the same color is 0.246 nm, while the distance between nearest neighbor

sites of different colors is 0.142 nm.

Now, the hopping term is then given by

t(|r⃗|) =

{
2.7 eV, |r⃗| = a0

0 eV, |r⃗| ≠ a0

which is only non-vanishing for nearest-neighbor hopping terms. So, summing over all terms that
are non-zero we find

HNN = −
∑
k

(t(d1)e
−ik·d1 + t(d2)e

−ik·d2 + t(d3)e
−ik·d3)a†kbk + (t(d1)e

ik·d1 + t(d2)e
ik·d2 + t(d3)e

ik·d3)b†kak

= −2.7
∑
k

(e−ik·d1 + e−ik·d2 + e−ik·d3)a†kbk + (eik·d1 + eik·d2 + eik·d3)b†kak

Or in matrix form

HNN (k) =

(
⟨a|HNN (k)|a⟩ ⟨a|HNN (k)|b⟩
⟨b|HNN (k)|a⟩ ⟨b|HNN (k)|b⟩

)
= −2.7

(
0 e−ik·d1 + e−ik·d2 + e−ik·d3

eik·d1 + eik·d2 + eik·d3 0

)
We can then plot the band structre. See Fig 2.

Fig 2. Energy bands on nearest neighbor hopping graphene model along the Γ−K line.
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Polypartite Lattice: Twisted Bilayer Graphene

As before, for N sites in the unit cell there is a corresponding N -band model that is given by a
Hamiltonian that is N ×N and is given by the sum over hops between sites in the unit cell

H =
∑

atoms in unit cell: l,m

Hlm

The term between sites l and m is

Hlm = −
∑

unit cells: i,j

t(rj − ri)(l
†
imj +m†

jli)

≈ −
∑

unit cells: i

∑
α,β=−1,0,1

t((ri + dlm + αaM1 + βaM2 )− ri)(l
†
imri+dlm+αaM1 +βaM2

+m†
ri+dlm+αaM1 +βaM2

li)

where we approximate the sum as going over nearest neighboring unit cells (see Fig 3). If desired,
we could sum over more unit cells. dlm is the distance between sites l and m in the unit cell, and
li is the annihilation operator of an electron on an l orbital at position ri.

Fig 3. To sum over the relevant range it is necessary to sum over neighboring unit cells.

Substituting the momentum-space representation and evaluating the resulting delta function we
obtain

Hlm ≈ −
∑
k

∑
α,β=−1,0,1

t(dlm + αaM1 + βaM2 )e−ik·(dlm+αam1 +βaM2 )l†kmk + h.c.

Now, if we have an expression for t(r) and the atomic positions then we can calculate the band
structure. Let’s do this. In the Appendix, the atomic positions are listed for pz orbitals in large-
twist angle commensurate TBG, and we use the model in Nano Lett. 10, 804 (2010):

t(r⃗) =

V 0
ppπe

−(|r⃗|−a0)/δ0

(
1−

(
r⃗·ez
|r⃗|

)2
)
+ V 0

ppσe
−(|r⃗|−d0)/δ0

(
r⃗·ez
|r⃗|

)2
, |r⃗| ≤ 4a0

0, |r⃗| > 4a0
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Where the parameters are given by

ez = (0, 0, 1)

a0 = a/
√
3 = 0.142 nm

d0 = 0.335 nm

δ0 = 0.184a = 0.0453 nm

Vppπ(|r⃗|) = 2.7 eV

Vppσ(|r⃗|) = −0.48 eV

We can now use this to plot the band structure of twisted bilayer graphene; see Fig 4.
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Tight Binding Model of LA-TBG at 21.78

FIG 4. Band structure of large twist angle commensurate TBG using 28-band tight-binding
model; note that K and M are rotated by θ/2 relative to monolayer graphene. Compare to

Figure 9(c) of Phys. Rev. B 87, 205404 (2013)

Appendix: Atomic Positions in
√
7×

√
7 Commensurate TBG

Here are the (unrelaxed) atomic positions for a twist angle of 21.78◦, corresponding to a
√
7×

√
7

commensurate unit cell (distances are in nm):

[0. , 0. , 0. ], [0.21304225, 0.123 , 0. ],

[0.21304225, 0.369 , 0. ], [0.4260845 , 0.246 , 0. ],

[0.4260845 , 0.492 , 0. ], [0.63912675, 0.369 , 0. ],

[0.63912675, 0.615 , 0. ], [0.07101408, 0.123 , 0. ],

[0.28405633, 0.246 , 0. ], [0.49709858, 0.123 , 0. ],

[0.28405633, 0.492 , 0. ], [0.49709858, 0.369 , 0. ],

[0.49709858, 0.615 , 0. ], [0.71014083, 0.492 , 0. ],

[0. , 0. , 0.335 ], [0.15217304, 0.19328571, 0.335 ],

[0.39564989, 0.15814286, 0.335 ], [0.30434607, 0.38657143, 0.335 ],

[0.54782293, 0.35142857, 0.335 ], [0.45651911, 0.57985714, 0.335 ],

[0.69999596, 0.54471429, 0.335 ], [0.26376659, 0.10542857, 0.335 ],

[0.17246277, 0.33385714, 0.335 ], [0.41593963, 0.29871429, 0.335 ],

[0.65941649, 0.26357143, 0.335 ], [0.32463581, 0.52714286, 0.335 ],

[0.56811266, 0.492 , 0.335 ], [0.7202857 , 0.68528571, 0.335 ]
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