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Floquet Lindbladians

Flat Bands

Correlated Physics in Magic Angle TBG

Where Do Flat Bands Come From?
Truly flat bands can originate in isolated atomic insulators,
or from more subtle kinetic (eg. Lieb and Kagomé lattices)
or quantum interference (eg. the twisted bilayer graphene
(TBG), or the 1D diamond chain lattice). Each of these
origins necessarily involves the Rank-Nullity theorem.
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The Coulomb interactions in
magic angle TBG dominate
kinetic behaviors leading to
correlated behaviors like

• Superconductivity
• Charge orders
• Magnetic orders
• Fractionalized states
• And more!

In quantum optics subject to dissipation, a “dark state” is a
state that is long lived. Borrowing this concept, we use the
term ”dark space” to describe the long-lived subspace of a
dissipative (fermionic) system. Now suppose that

holds, where we refer to as the “dark space” symmetry
operator. If this holds, then and and also

is Hermitian! With some algebra [3] this means
has particle-like and hole-like zero modes. If there are
fewer jump operators than orbitals then there will be
an additional particle like, and hole-like zero modes.
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Since imposes and an ansatz which fulfills
this requirement is
Where is a real valued symmetric matrix which occurs in
a superconducting substrate for any electronic system.

Exceptional Surfaces

Bloch Oscillations

L̃ij = 〈φi|Lcoh|φj〉

In the large limit, the effective Lindbladian (the only non-
trivial evolution) is generated by

where , are the states that span the dark space.
Generically this projection will lead to dispersive bands,
but charge conjugation symmetry requires paired modes
where and hence , so if is odd
then there must be at least one long lived zero mode .
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Exceptional Line

Dissipative QWZ (              )Γ < Γc

“Exceptional points” where
spectral degeneracies and
coalescence of eigenvectors
coincide are a hallmark of
non-Hermitian systems. In
higher dimensions these
exceptional points can
connect to form exceptional
lines and surfaces. Figure at
right: inside the exceptional
line, states have finite
lifetimes while outside they
are long lived.

Bloch oscillations occur
when an electron is subject
to a periodic potential and
an electric field gradient. In
the Lindbladian case the
motion of the electron can
wind around (or through)
an exceptional surface.

While one of the assumptions for an operator to be of
Lindbladian superoperator form is that the time-evolution
operator be time-independent, one can side-step this by
constructing a time-evolution operator that is periodic and
time and whose Floquet time-evolution operator is of
Lindblad form. This can be used to study Bloch oscillations.
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