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Exceptional points in parameter space where eigenvalues and eigenvectors coalesce are a key feature of non-Hermitian systems. 
Non-Hermiticity can originate with dissipation processes that lead to the gain or loss of energy and/or particles. In quantum 
systems, these processes can be represented via Lindbladian superoperators that determine the time evolution of the density 
matrix of a system subjected to continuous measurements by a memoryless bath. For quadratic Hamiltonians the Lindbladian can 
be reformulated in terms of right and left superfermions/superbosons with a low-dimension matrix representation. We showed (in 
arXiv:2203.07453) conditions under which symmetries of the dissipation (jump operators) ensure the formation of flat bands that 
are protected from dissipation. Here we review this work and outline our more recent work on Bloch oscillations and their possible 
signatures of winding topology around exceptional points and surfaces in the Brillouin zone.

Mathematical Definition
The Lindbladian superoperators are the class of time-
independent time evolution superoperators of
the density matrix that are completely positive trace
preserving (CPTP) and Markovian (memoryless) [1].

These superoperators extend the coherent evolution of
the von Neumann equation by considering the
evolution of a subsystem subject to jump operators that
change particle number and energy of (introduce non-
Hermiticity to) the subsystem. Explicitly, they read
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We can interpret the jump operators as measurement
operators in the limit of continuous measurement by a
memoryless observer. Physically this could correspond to
(1) qubits in a quantum circuit subject to continuous
measurements, (2) photons in a leaky cavity subject to
jumps to and from free space modes, or (3) a low
dimensional electronic system subject to jumps to and
from a substrate. For the electronic case, the substrate
must have a much larger DOS than the system and this
DOS must be flat over the energy range of interest for the
evolution to be Markovian. The CPTP constraint limits the
eigenspectrum of the Lindbladian to eigenvalues with
negative (or zero) imaginary part which correspond to
finite (or long lived) states with lifetimes .
We postulate that we can study a set of time dependent
systems by considering the case where the Floquet time
evolution superoperator is Lindbladian.

τ(ε) = h̄/Im(ε)

For a quadratic Lindbladian we can extend Prosen’s “third-
quantization” algebra [2] to place different parity sectors
on equal footing. Doing so enables a concise matrix
representation of the Lindbladian as expressed in terms of
“left” and “right” super-fermions whose eigenfunctions
are the normal modes of the full Lindbladian [3]. It reads

where the basis is where the
”left” and “right” super-fermions are given by

The single particle matrix forms are

and

Where the blocks are (implicit sum over )

In terms of the coefficients of the jump operators

We can write in terms of pseudospins for particles/holes     
and left/right contours     to make the symmetries 
manifest. has Bougilibov-de Gennes form, so we expect

• Charge conjugation symmetry

• Time reversal symmetry (“contour-reversal symmetry”)

• Chiral symmetry

(note the differences from Hermitian systems; see [4])
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Symmetries

Matrix Form

Complex Fermion Representation
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