
A Short Course on the Application of Group Theory to Quantum Mechanics: Summary

Linear Spaces

A linear space, or vector space, over a
field F=R,C, ..., is a set S with scalar
multiplication and addition, that obeys:
• A+B = B+A
• (A+B)+C = A+(B+C)
• ∃0 : A+0 = A
• ∃B : A+B = 0
• ∃1 : 1A = A
• (ab)A = a(bA)
• a(A+B) = aA+aB
• (a+b)A = aA+bA

Linearindependenceof{Ai}meansthat:

a1A1+a2A2+...+anAn=0 iff ai=0 ∀i
“A linear space S is n-dimensional if
the maximum number of elements that
are linearly independent from S is n.”

“Any element in S can be expressed in
terms of the linearly independent ones.”

Subspaces S′ are the span of elements
selectedfromS. Subspaceshavedim<n.

Discrete Delta Functions

The Kronecker Delta is:

δij =

{
0 if i 6= j

1 if i = j

The generalized Kronecker Delta is:

δSiSj
=

{
0 if set {Ai} 6= {Aj}
1 if set {Ai} = {Aj}

Perturbation Theory

A Hamiltonian may be expressed as the
sum of an unperturbed Hamiltonian
H0 and a perturbation H ′:

H = H0 +H ′

Let ψ1, ψ2, ...ψλ be λ-fold degenerate
eigenfunctions ofH0with the energy ε0.
In general, Hψ = εψ, so let H ′Ψ = εΨ:

Ψ ≈
∑

i
aiψi for best fit ai

Where ai may be found with each ψk:∑
i
ai(〈ψk|H ′|ψi〉 − ε〈ψk|ψi〉) = 0

If 〈ψk|ψi〉=δki, and H ′ki≡〈ψk|H ′|ψi〉:∣∣∣∣∣∣∣∣∣
H11−εδ11 H12−εδ12 . . . H1λ−εδ1λ
H21−εδ21 H22−εδ22 . . . H2λ−εδ2λ

...
...

. . .
...

Hλ1−εδλ1 Hλ2−εδλ2 . . . Hλλ−εδλλ

∣∣∣∣∣∣∣∣∣=0

The roots of this equation are εj which
correspond to the state Ψj =

∑
i a
j
iψi.

Note that if λ=1, then ε=〈ψ1|H ′|ψ1〉.

Lecture 1: Introduction

Groups contain distinct elements with
a definite “law of combination.”
For elements to be a group:
• If A,B are in the set, so is AB
• Associativity (AB)C = A(BC)
• Identity Element AI = IA = A
• Inverses AB=BA=I, A−1≡B

In general AB 6= BA, but if AB = BA
for all A,B, then the group is Abelian.
The “order” is the number of elements.
“The structure of a group is specified
by all ordered pairs of elements,” as may
be captured in a multiplication table.
Twogroupswith 1:1 elements,andsame
law of combination, are “isomorphic”.

Ex. G2 is the order-2 group that fulfills:
I E

I I E
E E I

A G2 group might act on functions f :

If(x) = f(x); Ef(x) = f(−x)

“Image pairs” are images of each other:

f+
E−→f−

E−→f+
E−→f−

E−→f+
E−→f−

E−→f+

Forevenparityfunctions,EfE=fE , and
for odd parity functions, EfO=−fO.

“Selection rules” are the orthogonality
relationships arising from symmetries:∫

x

dx fEfO = 0

“Expansion theorems” state “functions
with no special symmetries may be ex-
panded in terms of functions that do”:

f(x)=fE+fO for

{
fE= 1

2

(
f(x)+f(−x)

)
fO= 1

2

(
f(x)−f(−x)

)}
“For more complicated groups, more
complicated symmetries are possible.”

A set, and in particular, a linear space,
may be “spanned” by some elements:

S = {a1f1 + a2f2 : a1, a2 ∈ F}
f1 and f2 are a “basis” for this set;
bases are not unique. Sets that are a
sum of vectors in their subspaces that
are invariant under G are “reducible”:

S = S1 + S2 for

{
S1 = {af1 : a ∈ F}
S2 = {af2 : a ∈ F}

}
Irreducible spaces may not be reduced
to two spaces of lower dimension.

Elements in sets that are “invariant,” or
“closed” under a group remain in the set.

Lecture 2: Matrix Reps I

“The space S is said to be invariant
under a group G, if for any function f
in S and for any operator A in G, the
new function Af is a function in S.”

On a space invariant under a group,
(basis) functions stay in the space, so:

Afi =
∑

k
MA
ki fk

MA
kiare constants in matrixMA=[MA

ki],
where{fk}generatestherepresentation.
MA
ki is the component of Afi along fk:

MA
ki = 〈fk|A|fi〉

Invariant spaces have square matrices.
Here, fk belongs to the kth row and fi
belongs to the ith column of the matrix.

“There is one matrix for each operator
in the group.” Call these matrices MG.

For general functions in the basis {fi}:
Af = A

∑
i
aifi =

∑
i

∑
k
aiM

A
ki fk

Matrix representations in other bases:

MA = S−1MAS
Where S is the matrix of the new basis
vectors in terms of the old basisvectors.

To find the MA for A∈G over space S:
• Choose a basis for the space S
• Act A on each basis element fi
• The ith column of MA is Afi

To find the transformation matrix S:
• Select an old and a new basis
• Represent each new basis element

in terms of the old basis elements
• The ith column of S is the ith new

basis element in the old basis

Ex. noting that E2=I⇒(ME)2=[δij ],
with an image pair {f+, f−} it is found:{

If+ = f+

If− = f−

}
=⇒ M I =

(
1 0
0 1

)
{
Ef+ = f−

Ef−= f+

}
=⇒ ME=

(
0 1
1 0

)
With the new basis fE = 1

2 (f+ + f−),

and fO = 1
2 (f+− f−), matrix reps are:

MI=

(
1 0
0 1

)
, ME=

(
1 0
0 −1

)
, S=

1

2

(
1 1
1 −1

)
Recalling (ir)-reducible spaces, if a
space is reducible, with the appropriate
choice of an ordered basis, MA is then
a block diagonal matrix for all A ∈ G.
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Lecture 3: Matrix Reps II

Sc is the matrix which transforms MG

into a completely reduced block form:
MA
c = S−1c MASc

Completely reduced forms are written
as a diagonal sum over irreducible reps:

MG
c =

∑
i
aiM

G
i rep MG

i , ai times

For any basis in a space with a group:
reducible space ⇐⇒ reducible reps

irreducible space ⇐⇒ irreducible reps

Ex. Order-6 group, G6, with operators:

I: identity

Cr: counterclockwise 120◦

Cl: clockwise 120◦

σ1: reflect over L1

σ2: reflect over L2

σ3: reflect over L3
L1

L2 L3

The group multiplication table for G6:
I Cl Cr σ1 σ2 σ3

I I Cl Cr σ1 σ2 σ3
Cl Cl Cr I σ3 σ1 σ2
Cr Cr I Cl σ2 σ3 σ1
σ1 σ1 σ2 σ3 I Cl Cr
σ2 σ2 σ3 σ1 Cr I Cl
σ3 σ3 σ1 σ2 Cl Cr I

With a space spanned by the functions
φi=e−(x−xi)

2

e−(y−yi)
2

, corners i=1, 2, 3.
The representation is reduced with:

S =

1 0 2

1
√
3 −1

1 −
√
3 −1

 =⇒
one 1D irrep

one 2D irrep

For matrix M , if det(M) 6=0 then there
exists S such that S−1MS is unitary.
If MG

i and MG
k are irreducible unitary

representations of dim λi and λk, then:∑n

j=1

(
M

Aj

i,ab

)∗
M

Aj

k,a′b′ =
n

λi
·δikδaa′δbb′

It follows for the r irreps of the group:

λ21 + λ22 + · · ·+ λ2r = n

Trace, tr(A), is the same in all bases.
The “character” Aj , is in the rep MG:

TAj = tr
(
MAj

)
=
∑

k
M

Aj

kk

Through setting a=b, and a′=b′, find:∑n

j=1

(
T
Aj

i

)∗
T
Aj

k = n · δik
Now, relations for the diagonal sum:

TAj=

r∑
i=1

aiT
Aj

i ⇔ai=
1

n

n∑
j=1

(
T
Aj

i

)∗
TAj

Which forms the reducibility relations:

irred:
∑∣∣∣∣∣∣TAj

∣∣∣∣∣∣2 = n, red:
∑∣∣∣∣∣∣TAj

∣∣∣∣∣∣2 > n

Lecture 4: Applications

An operator A is unitary if and only if:
〈Af |Ag〉 = 〈f |g〉

For representations of G : G and G′,
and with basis functions of S :a and a′:

〈fGa |gG
′

a′ 〉=δGG′δaa′c; c= 1
λ

∑
b
〈fGb |gGb 〉

Selection rules are orthogonality with
decomposition into basic functions:

〈fb|Dg〉 = 〈fb|Dbgb〉
Expressed with the “direct product”,
or the Clebsch-Gordan series:

MD×g
G =

∑
i
aiM

G
i

Transform of H under operator Aj is:
Hj ≡ AjHA−1j

With unitary Aj the energy is the same
regardless of measurement location Aj :

〈Ψ|H|Ψ〉 = 〈AjΨ|HjAjΨ〉
The “symmetric group” is Aj such that
AjHA

−1
j =H, thence note [H,Aj ] = 0,

and spaceofeigenfunctions is invariant.

Degeneracies of the energy levels may
either be “normal” with irreducible reps
or “accidental” with reducible reps.

“Barring accidents, the degree of de-
generacy will correspond to the dimen-
sions of the irreps ... furthermore, the
eigenfunctions are the basic functions.”

Perturbations H ′ that are invariant un-
der either the symmetric group of H0,
or a subgroup of the symmetric group
may be simplified using group theory.

The determinantal equation for E′,
|H ′−E′I|=0 reduces to a product:

|H ′ − E′I| =
∏

i
|vicc′ − E′I|λi = 0

vicc′ = 〈Ψic
n |Ψic′

n 〉 for n ∈ {1, 2, ..., ai}
The energies E′ are the deviations from
the unperturbed E, and degeneracies
are predicted from dimension of irreps.

The elementary particles arise from the
successive perturbations of a specificH.

Operators in continuous groups are
constructed from a set of “generators.”
Generators are constrained by a set of
structure consts: [Gi, Gk] =

∑
j C

j
ikGj

Invariant operators are: [A,Gi]=0, ∀i
generator ⇐⇒ conserved quantity

invariant op. ⇐⇒ observable quantity

intentionally left blank
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