A Short Course on the Application of Group Theory to Quantum Mechanics: Summary

Linear Spaces

A linear space, or vector space, over a field $\mathbb{F}=\mathbb{R}, \mathbb{C}, \ldots$, is a set S with scalar multiplication and addition, that obeys:

- $A+B=B+A$
- $(A+B)+C=A+(B+C)$
- $\exists 0: A+0=A$
- $\exists B: A+B=0$
- $\exists 1: 1 A=A$
- $(a b) A=a(b A)$
- $a(A+B)=a A+a B$
- $(a+b) A=a A+b A$

Linear independence of $\left\{A_{i}\right\}$ meansthat: $a_{1} A_{1}+a_{2} A_{2}+\ldots+a_{n} A_{n}=0$ iff $a_{i}=0 \forall i$ "A linear space S is n-dimensional if the maximum number of elements that are linearly independent from S is n."
"Any element in S can be expressed in terms of the linearly independent ones."
Subspaces S^{\prime} are the span of elements selected from S. Subspaceshavedim $<n$.

Discrete Delta Functions

The Kronecker Delta is:

$$
\delta_{i j}= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

The generalized Kronecker Delta is:

$$
\delta_{S_{i} S_{j}}= \begin{cases}0 & \text { if set }\left\{A_{i}\right\} \neq\left\{A_{j}\right\} \\ 1 & \text { if set }\left\{A_{i}\right\}=\left\{A_{j}\right\}\end{cases}
$$

Perturbation Theory

A Hamiltonian may be expressed as the sum of an unperturbed Hamiltonian H_{0} and a perturbation H^{\prime} :

$$
H=H_{0}+H^{\prime}
$$

Let $\psi_{1}, \psi_{2}, \ldots \psi_{\lambda}$ be λ-fold degenerate eigenfunctions of H_{0} with the energy ϵ_{0}. In general, $H \psi=\epsilon \psi$, so let $H^{\prime} \Psi=\epsilon \Psi$: $\Psi \approx \sum_{i} a_{i} \psi_{i} \quad$ for best fit a_{i}
Where a_{i} may be found with each ψ_{k} : $\sum_{i} a_{i}\left(\left\langle\psi_{k}\right| H^{\prime}\left|\psi_{i}\right\rangle-\epsilon\left\langle\psi_{k} \mid \psi_{i}\right\rangle\right)=0$
If $\left\langle\psi_{k} \mid \psi_{i}\right\rangle=\delta_{k i}$, and $H_{k i}^{\prime} \equiv\left\langle\psi_{k}\right| H^{\prime}\left|\psi_{i}\right\rangle$:
$\left|\begin{array}{cccc}H_{11}-\epsilon \delta_{11} & H_{12}-\epsilon \delta_{12} & \ldots & H_{1 \lambda}-\epsilon \delta_{1 \lambda} \\ H_{21}-\epsilon \delta_{21} & H_{22}-\epsilon \delta_{22} & \ldots & H_{2 \lambda}-\epsilon \delta_{2 \lambda} \\ \vdots & \vdots & \ddots & \vdots \\ H_{\lambda 1}-\epsilon \delta_{\lambda 1} & H_{\lambda 2}-\epsilon \delta_{\lambda 2} & \ldots & H_{\lambda \lambda}-\epsilon \delta_{\lambda \lambda}\end{array}\right|=0$
The roots of this equation are ϵ^{j} which correspond to the state $\Psi^{j}=\sum_{i} a_{i}^{j} \psi_{i}$.
Note that if $\lambda=1$, then $\epsilon=\left\langle\psi_{1}\right| H^{\prime}\left|\psi_{1}\right\rangle$.

Lecture 1: Introduction

Groups contain distinct elements with a definite "law of combination."
For elements to be a group:

- If A, B are in the set, so is $A B$
- Associativity $(A B) C=A(B C)$
- Identity Element $A I=I A=A$
- Inverses $A B=B A=I, A^{-1} \equiv B$

In general $A B \neq B A$, but if $A B=B A$ for all A, B, then the group is Abelian. The "order" is the number of elements. "The structure of a group is specified by all ordered pairs of elements," as may be captured in a multiplication table. Twogroupswith 1:1 elements, andsame law of combination, are "isomorphic".
Ex. G_{2} is the order-2 group that fulfills:

	I E	
I	I	E
E	E	I

A G_{2} group might act on functions f :

$$
I f(x)=f(x) ; \quad E f(x)=f(-x)
$$

"Image pairs" are images of each other:
$f_{+} \xrightarrow{E} f_{-} \xrightarrow{E} f_{+} \xrightarrow{E} f_{-} \xrightarrow{E} f_{+} \xrightarrow{E} f_{-} \xrightarrow{E} f_{+}$ Forevenparity functions, $E f_{E}=f_{E}$, and for odd parity functions, $E f_{O}=-f_{O}$.
"Selection rules" are the orthogonality relationships arising from symmetries:

$$
\int_{x} d x f_{E} f_{O}=0
$$

"Expansion theorems" state "functions with no special symmetries may be expanded in terms of functions that do": $f(x)=f_{E}+f_{O}$ for $\left\{\begin{array}{l}f_{E}=\frac{1}{2}(f(x)+f(-x)) \\ f_{O}=\frac{1}{2}(f(x)-f(-x))\end{array}\right\}$ "For more complicated groups, more complicated symmetries are possible."
A set, and in particular, a linear space, may be "spanned" by some elements:

$$
S=\left\{a_{1} f_{1}+a_{2} f_{2}: a_{1}, a_{2} \in \mathbb{F}\right\}
$$

f_{1} and f_{2} are a "basis" for this set; bases are not unique. Sets that are a sum of vectors in their subspaces that are invariant under G are "reducible":
$S=S_{1}+S_{2}$ for $\left\{\begin{array}{l}S_{1}=\left\{a f_{1}: a \in \mathbb{F}\right\} \\ S_{2}=\left\{a f_{2}: a \in \mathbb{F}\right\}\end{array}\right\}$ Irreducible spaces may not be reduced to two spaces of lower dimension.

Elements in sets that are "invariant," or "closed" under a group remain in the set.

Lecture 2: Matrix Reps I

"The space S is said to be invariant under a group G, if for any function f in S and for any operator A in G, the new function $A f$ is a function in S."

On a space invariant under a group, (basis) functions stay in the space, so:

$$
A f_{i}=\sum_{k} M_{k i}^{A} f_{k}
$$

$M_{k i}^{A}$ are constants in matrix $M^{A}=\left[M_{k i}^{A}\right]$, where $\left\{f_{k}\right\}$ generates the representation. $M_{k i}^{A}$ is the component of $A f_{i}$ along f_{k} :

$$
M_{k i}^{A}=\left\langle f_{k}\right| A\left|f_{i}\right\rangle
$$

Invariant spaces have square matrices. Here, f_{k} belongs to the $k^{\text {th }}$ row and f_{i} belongs to the $i^{\text {th }}$ column of the matrix.
"There is one matrix for each operator in the group." Call these matrices M^{G}.
For general functions in the basis $\left\{f_{i}\right\}$: $A f=A \sum_{i} a_{i} f_{i}=\sum_{i} \sum_{k} a_{i} M_{k i}^{A} f_{k}$ Matrix representations in other bases:

$$
\bar{M}^{A}=S^{-1} M^{A} S
$$

Where S is the matrix of the new basis vectors in terms of the old basisvectors.
To find the M^{A} for $A \in G$ over space S :

- Choose a basis for the space S
- Act A on each basis element f_{i}
- The $i^{\text {th }}$ column of M^{A} is $A f_{i}$

To find the transformation matrix S :

- Select an old and a new basis
- Represent each new basis element in terms of the old basis elements
- The $i^{\text {th }}$ column of S is the $i^{\text {th }}$ new basis element in the old basis

Ex. noting that $E^{2}=I \Rightarrow\left(M^{E}\right)^{2}=\left[\delta_{i j}\right]$, with an image pair $\left\{f_{+}, f_{-}\right\}$it is found:

$$
\begin{aligned}
& \left\{\begin{array}{l}
I f_{+}=f_{+} \\
I f_{-}=f_{-}
\end{array}\right\} \Longrightarrow M^{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \left\{\begin{array}{l}
E f_{+}=f_{-} \\
E f_{-}=f_{+}
\end{array}\right\} \Longrightarrow M^{E}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

With the new basis $f_{E}=\frac{1}{2}\left(f_{+}+f_{-}\right)$, and $f_{O}=\frac{1}{2}\left(f_{+}-f_{-}\right)$, matrix reps are: $M^{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), M^{E}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), S=\frac{1}{2}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
Recalling (ir)-reducible spaces, if a space is reducible, with the appropriate choice of an ordered basis, M^{A} is then a block diagonal matrix for all $A \in G$.

A Short Course on the Application of Group Theory to Quantum Mechanics: Summary

Lecture 3: Matrix Reps II

S_{c} is the matrix which transforms M^{G} into a completely reduced block form:

$$
M_{c}^{A}=S_{c}^{-1} M^{A} S_{c}
$$

Completely reduced forms are written as a diagonal sum over irreducible reps: $M_{c}^{G}=\sum_{i} a_{i} M_{i}^{G} \quad \operatorname{rep} M_{i}^{G}, a_{i}$ times
For any basis in a space with a group: reducible space \Longleftrightarrow reducible reps
irreducible space \Longleftrightarrow irreducible reps
$\overline{\text { Ex. Order-6 group, }} G_{6}$, with operators:
I : identity
C_{r} : counterclockwise 120°
C_{l} : clockwise 120°
σ_{1} : reflect over L_{1} σ_{2} : reflect over L_{2} $\sigma_{3}:$ reflect over L_{3}

The group multiplication table for G_{6} :

	I		C_{l}		C_{r}	σ_{1}		σ_{2}		σ_{3}
I	I	C_{l}	C_{r}	σ_{1}	σ_{2}	σ_{3}				
C_{l}	C_{l}	C_{r}	I	σ_{3}	σ_{1}	σ_{2}				
C_{r}	C_{r}	I	C_{l}	σ_{2}	σ_{3}	σ_{1}				
σ_{1}	σ_{1}	σ_{2}	σ_{3}	I	C_{l}	C_{r}				
σ_{2}	σ_{2}	σ_{3}	σ_{1}	C_{r}	I	C_{l}				
σ_{3}	σ_{3}	σ_{1}	σ_{2}	C_{l}	C_{r}	I				

With a space spanned by the functions $\phi_{i}=e^{-\left(x-x_{i}\right)^{2}} e^{-\left(y-y_{i}\right)^{2}}$, corners $i=1,2,3$. The representation is reduced with:

$$
S=\left(\begin{array}{ccc}
1 & 0 & 2 \\
1 & \sqrt{3} & -1 \\
1 & -\sqrt{3} & -1
\end{array}\right) \Longrightarrow \begin{gathered}
\text { one 1D irrep } \\
\text { one 2D irrep }
\end{gathered}
$$

For matrix M, if $\operatorname{det}(M) \neq 0$ then there exists S such that $S^{-1} M S$ is unitary. If M_{i}^{G} and M_{k}^{G} are irreducible unitary representations of $\operatorname{dim} \lambda_{i}$ and λ_{k}, then: $\sum_{j=1}^{n}\left(M_{i, a b}^{A_{j}}\right)^{*} M_{k, a^{\prime} b^{\prime}}^{A_{j}}=\frac{n}{\lambda_{i}} \cdot \delta_{i k} \delta_{a a^{\prime}} \delta_{b b^{\prime}}$
It follows for the r irreps of the group:

$$
\lambda_{1}^{2}+\lambda_{2}^{2}+\cdots+\lambda_{r}^{2}=n
$$

Trace, $\operatorname{tr}(A)$, is the same in all bases. The "character" A_{j}, is in the rep M^{G} : $T^{A_{j}}=\operatorname{tr}\left(M^{A_{j}}\right)=\sum_{k} M_{k k}^{A_{j}}$
Through setting $a=b$, and $a^{\prime}=b^{\prime}$, find:

$$
\sum_{j=1}^{n}\left(T_{i}^{A_{j}}\right)^{*} T_{k}^{A_{j}}=n \cdot \delta_{i k}
$$

Now, relations for the diagonal sum:
$T^{A_{j}}=\sum_{i=1}^{r} a_{i} T_{i}^{A_{j}} \Leftrightarrow a_{i}=\frac{1}{n} \sum_{j=1}^{n}\left(T_{i}^{A_{j}}\right)^{*} T^{A_{j}}$
Which forms the reducibility relations: irred: $\sum\left\|T^{A_{j}}\right\|^{2}=n, \quad$ red: $\sum\left\|T^{A_{j}}\right\|^{2}>n$

Lecture 4: Applications

An operator A is unitary if and only if:

$$
\langle A f \mid A g\rangle=\langle f \mid g\rangle
$$

For representations of $G: G$ and G^{\prime}, and with basis functions of $S: a$ and a^{\prime} : $\left\langle f_{a}^{G} \mid g_{a^{\prime}}^{G^{\prime}}\right\rangle=\delta_{G G^{\prime}} \delta_{a a^{\prime}} c ; c=\frac{1}{\lambda} \sum_{b}\left\langle f_{b}^{G} \mid g_{b}^{G}\right\rangle$
Selection rules are orthogonality with decomposition into basic functions:

$$
\left\langle f_{b} \mid D g\right\rangle=\left\langle f_{b} \mid D_{b} g_{b}\right\rangle
$$

Expressed with the "direct product", or the Clebsch-Gordan series:

$$
M_{G}^{D \times g}=\sum_{i} a_{i} M_{i}^{G}
$$

Transform of H under operator A_{j} is:

$$
H^{j} \equiv A_{j} H A_{j}^{-1}
$$

With unitary A_{j} the energy is the same regardless of measurement location A_{j} :

$$
\langle\Psi| H|\Psi\rangle=\left\langle A_{j} \Psi \mid H^{j} A_{j} \Psi\right\rangle
$$

The "symmetric group" is A_{j} such that $A_{j} H A_{j}^{-1}=H$, thence note $\left[H, A_{j}\right]=0$, and space of eigenfunctions is invariant.

Degeneracies of the energy levels may either be "normal" with irreducible reps or "accidental" with reducible reps.
"Barring accidents, the degree of degeneracy will correspond to the dimensions of the irreps ... furthermore, the eigenfunctions are the basic functions."

Perturbations H^{\prime} that are invariant under either the symmetric group of H_{0}, or a subgroup of the symmetric group may be simplified using group theory.

The determinantal equation for E^{\prime}, $\left|H^{\prime}-E^{\prime} I\right|=0$ reduces to a product:

$$
\begin{gathered}
\left|H^{\prime}-E^{\prime} I\right|=\prod_{i}\left|v_{c c^{\prime}}^{i}-E^{\prime} I\right|^{\lambda_{i}}=0 \\
v_{c c^{\prime}}^{i}=\left\langle\Psi_{n}^{i c} \mid \Psi_{n}^{i c^{\prime}}\right\rangle \text { for } n \in\left\{1,2, \ldots, a_{i}\right\}
\end{gathered}
$$

The energies E^{\prime} are the deviations from the unperturbed E, and degeneracies are predicted from dimension of irreps.

The elementary particles arise from the successive perturbations of a specific H.

Operators in continuous groups are constructed from a set of "generators." Generators are constrained by a set of structure consts: $\left[G_{i}, G_{k}\right]=\sum_{j} C_{i k}^{j} G_{j}$
Invariant operators are: $\left[A, G_{i}\right]=0, \forall i$ generator \Longleftrightarrow conserved quantity invariant op. \Longleftrightarrow observable quantity

