A Short Course on the Application of Group Theory to Quantum Mechanics: Summary

LINEAR SPACES

A linear space, or vector space, over a

field F=R,C, ..., is a set .S with scalar

multiplication and addition, that obeys:
e A+B=DB+A

(A+B)+C = A+(B+0C)
30 : A+0=A

dB: A+B=0
J1:1A=A

(ab)A = a(bA)

a(A+B) = aA+aB

(a+b)A = aA+bA
Linearindependenceof{A;} meansthat:
a1 A1 +asAs+...+a, A, =0 iff a;=0Vi

“A linear space S is n-dimensional if
the maximum number of elements that
are linearly independent from S is n.”

“Any element in S can be expressed in
terms of the linearly independent ones.”

Subspaces S’ are the span of elements
selected from.S. Subspaceshavedim < n.

DISCRETE DELTA FUNCTIONS
The Kronecker Delta is:

%:{(1) if i £ j

ifi=j
The generalized Kronecker Delta is:

{o if set {A;} # {A;}
0s;8;, = )

if set {Az} = {AJ}
PERTURBATION THEORY
A Hamiltonian may be expressed as the
sum of an unperturbed Hamiltonian
Hy and a perturbation H':
H=Hy,+ H'
Let 1,19, ...10) be A-fold degenerate
eigenfunctions of Hywith the energy .
In general, Hy) = e, so let H'U = €:
U ~ Z a;vp;  for best fit a;
Where a; may be found with each vy:
> ail{ulH' i) — e{ilin)) =0
If (g |vi) = Oi, and Hy,; = (g |[H'[1s):
Hi1—eb11 Hiz—ed1a ... Hix—ebia
Hy1—€b21 Haz—€doz ... Hax—e€dox
. . =0
Hx1—€dx1 Hxa—€drna ... Haxx—edax

The roots of this equation are e/ which
correspond to the state W7 = . al4);.

Note that if A=1, then e= (¢ |H'|11).

LECTURE 1: INTRODUCTION

Groups contain distinct elements with
a definite “law of combination.”
For elements to be a group:

e If A, B are in the set, so is AB

e Associativity (AB)C = A(BC)

e Identity Element AT =TA=A

o Inverses AB=BA=I, A"'=B
In general AB # BA, but if AB = BA
for all A, B, then the group is Abelian.
The “order” is the number of elements.
“The structure of a group is specified
by all ordered pairs of elements,” as may
be captured in a multiplication table.
Twogroupswith 1:1 elements,andsame
law of combination, are “isomorphic”.

Ex. G4 is the order-2 group that fulfills:

I E
I |1 ]E
E|E |1
A G5 group might act on functions f:
If(z) = f(x);  Ef(z) = f(-2)

“Image pairs” are images of each other:
E E E E E E
fo—=f-—=f=f—=h=—f
Forevenparityfunctions, F fg = fg, and

for odd parity functions, Efo=—fo.

“Selection rules” are the orthogonality
relationships arising from symmetries:
/ dz fefo =0

x

“Expansion theorems” state “functions
with no special symmetries may be ex-
panded in terms of functions that do”:

fe=5(f(@)+f(~z
f(x)=fe+fo for f( (@)+f( ))

fo=3(f(z)=f(-x))
“For more complicated groups, more
complicated symmetries are possible.”

A set, and in particular, a linear space,
may be “spanned” by some elements:
S={aifi +asfr:a1,a2 € F}

f1 and fy are a “basis” for this set;
bases are not unique. Sets that are a
sum of vectors in their subspaces that
are invariant under G are “reducible”:

S1 ={afi:a€F}
Sy ={afy:a c€F}
Irreducible spaces may not be reduced
to two spaces of lower dimension.

S =51+95 for{

Elements in sets that are “invariant,” or
“closed” under a group remain in the set.

LECTURE 2: MATRIX REPS I

“The space S is said to be invariant
under a group G, if for any function f
in S and for any operator A in G, the
new function Af is a function in S.”

On a space invariant under a group,
(basis) functions stay in the space, so:

Afi=), M [
M are constants in matrix MA=[M{],
where { fi, } generatestherepresentation.
M,ﬁ is the component of Af; along f:
M = (filAlf:)
Invariant spaces have square matrices.
Here, fi belongs to the k*" row and f;
belongs to the it" column of the matrix.

“There is one matrix for each operator
in the group.” Call these matrices M.

For general functions in the basis {f;}:

Af =AY afi=) > aiMf

Matrix representations in other bases:
MA =S"1MAS

Where S is the matrix of the new basis

vectors in terms of the old basisvectors.

To find the M4 for A€ G over space S:
e Choose a basis for the space S
e Act A on each basis element f;
e The i** column of M4 is Af;

To find the transformation matrix S:
e Select an old and a new basis
e Represent each new basis element
in terms of the old basis elements
o The i*" column of S is the i*? new
basis element in the old basis

Ex. noting that E?=1=(M¥)?=[5;],
with an image pair {f4, f_} it is found:

Ify = f+ 10
{If_:f_} = M= (0 1)

{Ef+f_} Y (0 1)
Bf- =/, 10
With the new basis fr = 2(f + f-),
and fo = 3(f4 — f-), matrix reps are:

;{10 5_(1 0 _1(1 1
wi=(g 1) mm=(p %) s=5( )

Recalling (ir)-reducible spaces, if a
space is reducible, with the appropriate
choice of an ordered basis, M4 is then
a block diagonal matrix for all A € G.
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LECTURE 3: MATRIX REPS II

S, is the matrix which transforms M
into a completely reduced block form:
M2 = S 1MAsS,
Completely reduced forms are written
as a diagonal sum over irreducible reps:

G G
M. = Zi a; M, rep M

i a; times

For any basis in a space with a group:
reducible space <= reducible reps

irreducible space <= irreducible reps

Ex. Order-6 group, Gg, with operators:
I: identity
C,.: counterclockwise 120°
C: clockwise 120°
oy: reflect over L,
o9: reflect over Lo
o3: reflect over L3

The group multiplication table for Gg:
1 ¢ C. o 02 g3

1 1 Cl Cr g1 g9 03
Cl Cl CT I g3 (o} g9
CT CT I Cl (o) g3 (o}
g1 g1 () g3 1 Cl CT»
g9 ()] g3 g1 Cr 1 Cl
o3 03 01 (o) Cl Cr I

With a space spanngd by the functions
¢i=e~ (@) e~vi) | corners i=1, 2, 3.
The representation is reduced with:

1 0 2
S=[(1 v3 -1|] =
1 —V3 -1

For matrix M, if det(M)#£0 then there
exists S such that S™'MS is unitary.
If MZ-G and M, kG are irreducible unitary
representations of dim A\; and A, then:

n A\ * A n
Z . (Mz;b) My oy = Y'éikéaa’(sbb’
3

one 1D irrep

one 2D irrep

j=1
It follows for the r irreps of the group:
M+ 4+ =n
Trace, tr(A), is the same in all bases.
The “character” A;, is in the rep MEC:
T =w(MY) =3 My
Through setting a= b and o’ =V, find:
n A\ " A
27:1 (Ti J) Ty" =mn-u
Now, relations for the diagonal sum:
A 1 - Aj AL
T J—Zal RZ(T -)T ;

j=1
Whlch forms the reducibility relations:

irred: 3 HTAJ' g red: 3 HTAJ' ?

J@az

>n

LECTURE 4: APPLICATIONS

An operator A is unitary if and only if:
(AflAg) = (flg)

For representations of G : G and G’,

and with basis functions of S:a and a’:

<fc?|9¢(z;’/>:5GG’5aa’c3 C:%Zb<fl§|gl?>
Selection rules are orthogonality with
decomposition into basic functions:

(fol Dg) = (fo| Dogs)
Expressed with the “direct product”,
or the Clebsch-Gordan series:

ME*9 = Z a;ME

Transform of H under operator A; is:
H) = A;HAT!

With unitary A; the energy is the same
regardless of measurement location A;:
(U[H|W) = (A;W|HI A,0)

The “symmetric group” is A; such that
AjHA;1 = H, thence note [H, A;]=0,

and spaceofeigenfunctions is invariant.

Degeneracies of the energy levels may
either be “normal” with irreducible reps
or “accidental” with reducible reps.

“Barring accidents, the degree of de-
generacy will correspond to the dimen-
sions of the irreps ... furthermore, the
eigenfunctions are the basic functions.”

Perturbations H' that are invariant un-
der either the symmetric group of Hy,
or a subgroup of the symmetric group
may be simplified using group theory.

The determinantal equation for E’,
|H'— E’I| 0 reduces to a product:

| —F'Il = H [vi, — E'TN =0
vl = (W)WY for noe {1,2,...,a;}
The energies E’ are the deviations from

the unperturbed E, and degeneracies
are predicted from dimension of irreps.

The elementary particles arise from the
successive perturbations of a specific H.

Operators in continuous groups are
constructed from a set of “generators.”
Generators are constrained by a set of
structure consts: [G, Gi] =3, C}.G

0, Vi

generator <= conserved quantity

Invariant operators are: [A, G;]=

invariant op. <= observable quantity
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