Stationary Points in the Plane for Regular Polygons of Fixed Point Charges

Spenser Talkington, November 10, 2019

The Question

Suppose that we have n > 3 point charges, each with
charge ¢, and we fix them in place at the corners of a
regular polygon with n sides and apothem a. Now, if
we have an additional charge @, that is free to move,
and we place it at rest in the plane, at what points
will it stay at rest? Assume that the electric force is
the only relevant force, that F' = ¢FE, and:

(1)

The solution to is simple: @ will stay at rest when
the electric field is 0:

E=0 (2)
One solution is the center of the polygon. However,
perhaps counterintuitively, n more solutions exist.

The purpose of this report is to build intuition for
the the behavior of charges in an electric field.

Ansatz

We propose that there is a family of solutions in
addition the point at the center: saddle points of
the scalar potential, which lie on the n apothems.
In polar coordinates, these points are located at
0=2n(i+1/2)/n forie{0,1,...,n— 1}, where:

rn € (0,a) (3)
This ansatz is sensible because to first order, the
scalar potential in between any two neighboring point
charges on the polygon is the scalar potential of two
point equal charges. For this potential, we know there
is a saddle point equally spaced between the points.
Higher order corrections move the saddle off the side
of the polygon and give the precise location of the
stationary point. Note the saddle point is an unsta-
ble equilibrium for both @ < 0 and @ > 0, thus the
need to neglect gravity and other forces.

FIG. 1. Two of the
seven stationary points in
a hexagon. Drawn to
scale. Note that one
point is near, but not at
the center of a side.
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FIG. 2. Direction of the electric field for an square of
charges. Stationary points are marked in red.

Solution for Radii

Zeros of the Electric Field

For n small it is possible to write the field explic-
itly and unambiguously, while for larger n, the direc-
tion of contribution to the electric field by a given
point charge becomes ambiguous. For a square of
charges, we equate the forces from equation 1 along
the apothem, with k¢ =1,a =1, and r € (—1,1):

1 1-—
= 3/2 - 52 =0 (4)
(14+r)2+1) (1—=r)2+1)
For a hexagon, the equation is:
r 147 1—r
+

3/2

+ )" e

(5)
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The solutions to these equations are most clearly ex-
pressed numerically, where the radii for a square are
ry € {0,£0.773485}, and the radii for a hexagon are
re¢ € {0,£0.892333}.

While this method works for a few charges, it breaks
down, even at n = 5. It is equivalent and unambigu-
ous to find the critical points of the scalar potential.



FIG. 3. Scalar potential for n = 16 charges. Note the
local minimum at (0,0)”, and the saddle points near

the edges of the polygon.

Critical Points of the Scalar Potential

The electric field is the negative gradient of the scalar
potential, so zeros of the electric field are critical
points of the scalar potential:

E=-VV (6)

For simplicity, we express the scalar potential in polar
coordinates, where R is the circumradius a/ cos(m/n):

V(r,0) =kq Z_:

=0

1
V/R? 412 — 2Rr cos(2mi/n — 0)
(7)

We then proceed numerically:

1. Express V(r,0) as V(z,y) using r = y/x2 + 2,
and 6 = arctan(y/x)

2. Find FE, but don’t project onto the apothem

3. Find E’s zeros using Mathematica’s FindRoot

4. Calculate the radius

Radii as Dependent on Number of Charges
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FIG. 4. Radii asymptotically approach 1 for large
n. The radii can be approximately interpolated by a
function of form 1 — 1/n that diverges at n = 2 and
interpolates (3,73).

Backstory

I first thought of a version of this problem when I
posed a question to my electromagnetism students:

“Given a square of side length a with charges q fized
on each corner, describe the subsequent motion for
a charge q released at rest anywhere in the square.
Le. does the charge stay in the square, move to the
center, move towards a fixed charge, head to infinity,
oscillate, etc.”

When I plotted the field as in Fig. 2, I realized there
were two regions: one where the charge goes to infin-
ity, one where the charge oscillates, and five points
where the charge stays at rest.

I was then curious as to the location of these station-
ary points, so I investigated. While the equations for
the radii are algebraic, their solutions are not simple,
so I proceeded numerically. I selected Mathematica
to implement a solution simply, and to visualize the
potential easily.

I have become aware that this problem has been con-
sidered to some extent at Physics StackExchange.


https://physics.stackexchange.com/questions/108929/

