

Driving the Dark State: The Bloch Ness Monster

Spenser Talkington • UPenn Physics Graduate Student Visiting Day 2023 24 March 2023

Driving the Bloch Ness Monster

How Do We Characterize Civilization?

- With Ages
 - Stone Age
 - Bronze Age
 - Iron Age
 - Silicon Age
- Control over the structure and properties of materials changes the standard of living

Can We Control Materials?

- Modern life is enabled by digital devices
- The first general-purpose digital computer was made at Penn
- The enormous growth from there was made by mastering the physics of silicon
- Quantum Mechanics governs the properties of materials

What does Quantum Mechanics give us?

- Single particle
 - Stone, Bronze, Iron, Silicon
 - Topology, *a la* Kane and Mele (Penn)
- Many particle
 - Superconductivity, *a la* Schrieffer (Penn)
 - Quantum computers
 - Simulations of real molecules
- This isn't all there is: the systems we want to consider are usually not isolated from their environment

What is Ness?

- We need to consider dissipation!
- In equilibrium we have

$$\rho_{\rm eq} = \frac{e^{-\beta H}}{\mathrm{Tr}(e^{-\beta H})}$$

• In non-equilibrium systems consider the long-time steady state (NESS)

$$\frac{d\rho_{\rm ss}}{dt} = 0$$

What is Bloch?

- In quantum matter we consider systems with many degrees of freedom
- How to simplify?
 - Use symmetry
- Discrete translations

 $\psi(\boldsymbol{x}) = e^{i\boldsymbol{k}\cdot\boldsymbol{x}}u(\boldsymbol{x})$

- For periodic *u(x)*
- Bloch's theorem

Is Nessy Boring?

• The vacuum can be a NESS

$$\frac{d|\mathrm{vac}\rangle\langle\mathrm{vac}|}{dt} = 0$$

- Does dissipative time evolution lead you there?
- Not necessarily!
- Long lived dark states can evade the vacuum

Monster vacuum

Is Bloch Ness Magical or Just Mythical?

- Non-equilibrium steady states can be dominated by flat band dark states
- Example
 - QWZ model of a 2D Chern insulator
 - Couple to a superconducting substrate
- Our previous work
 - Long lived flat bands form in the dark space of the dissipation operator
 - Derived symmetry-based conditions for the existence of long-lived flat bands
 - PRB **106**, 161109 (2022)

What's Magical About Flat Bands?

- Dominant Coulomb Interaction + Fractional Filling = Interesting Physics
 - Fractionalized states
 - Superconductivity
 - Charge orders
 - And more!

What's the Response?

- System to perturbation
- System to perturbation and substrate
- System to perturbation and substrate to perturbation
- Response isn't just to H^{NH}, but also the substrate (integrated out to give jumps J_m)

System

Substrate

How Does Nessy Respond to Driving?

- Model with non-zero Chern number for the closed system
- $\sigma_{xy}(0)$ vanishes for open system!
 - Steady state ≠ equilibrium

Research Summary

Bloch Ness Monster

- Lives in Fermi Sea
- Periodic behavior
- Subject to dissipation
- Flat band magic
- Drive with EM fields

Loch Ness Monster

- Lives in Loch Ness
- Periodic sightings
- Dissipating likelihood
- Mythical creature
- Drive with remote control

Why UPenn?

- Professional Development
 - Links to other programs: engineering, chemistry, Wharton
- Quality of Life
 - People are nice
 - Less competition
 - No comp exam
- Ego
 - Top 15 physics PhD program
 - It's an Ivy league school

Why Philadelphia?

- Size and Location
 - It's a big city (sixth largest in US)
 - But easy to get around
 - An hour train ride from NYC and DC
- Activities
 - Good food
 - Famous museums
 - Good sports teams
 - Largest urban park in US
- You're a grad student
 - The cost of living is low

Feel free to reach out

spenser@upenn.edu

