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Abstract

In these notes we introduce thermalization and many
body localization (MBL) through the specific exam-
ple of the XXZ model with a random transverse and a
fixed parallel field. We then conduct a moderate-size
exact diagonalization study of level spacing statistics
with up to L = 16 sites in the half-filling particle
sector, diagonalizing matrices up to size 12870. We
reproduce the results of PRB 75, 155111 (2007). Fi-
nally, we review the recent controversy on the (non)-
existence of MBL and provide further reading.

Thermalization and Localization

A quantum particle in an infinite well is localized,
but a particle in any finite well has a finite tunneling
probability to other wells. A priori, quantum tunnel-
ing would seem to dictate that the particle explore
physical and parameter space. Except for in finely
tuned integrable systems where an extensive num-
ber of locally conserved quantities enable trajectories
to close we expect quantum systems to thermalize.
Thermalization is the process where time evolution
brings the density matrix arbitrarily close to a ther-
mal density matrix at long times. While the time
evolution may be unitary and the system remains in
a pure state ergodicity, or the exploration of phase
space, leads to thermalization. This is the eigenstate
thermalization hypothesis (ETH) that in all but a few
closed-orbit systems information will end up in in-
accessable non-local degrees of freedom at long times.

Thermalization is challenged by localization where
the destructive interference of phases leads to the
(Anderson) localization of information at long times.
Generalizing to many-body systems, disorder is pos-
tulated to localize information even at long times.

Poisson and Wigner-Dyson Statistics

In thermalized, diffusive systems one expects random
matrix theory statistics for the distribution of eigen-
values, e.g. GOE statistics, where no eigenvalues are
degenerate. In localized systems one expects Poisso-
nian statistics where eigenvalues can bunch. A more
robust statistical measure is the level spacing ratio

rn =
min(En+1 − En, En+2 − En+1)

max(En+1 − En, En+2 − En+1)

XXZ Model With Two Fields

Let us consider the XXZ spin model with L sites and
open boundary conditions

HXXZ = J
L−1∑
i=1

(Sx
i S

x
i+1 + Sy

i S
y
i+1) + Jz

L−1∑
i=1

Sz
i S

z
i+1.

Now this model is integrable, so system dynamics will
form closed trajectories and the system will retain
knowledge of its initial state at long times. To break
integrability we add a long-ranged parallel field term

H∥ = hx

L∑
i=1

Sx
i ,

where the Jordan-Wigner string breaks the locally
conserved quantities, which will open the trajecto-
ries and result in diffusive behavior where the sys-
tem state at long times will retain little information
about the initial state. To compete with this we add
random local potentials hi and seek to numerically
answer whether localization occurs

H⊥ =
L∑
i=1

hiS
z
i ,

so that we have H = HXXZ +H∥+H⊥. Now we can
express this in terms of fermions using the Jordan-
Wigner transformation
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Sy
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+
i − S−

i )

S+
i = e−iπ

∑
j<i c

†
jcjc†i

S−
i = eiπ

∑
j<i c

†
jcjci

Sz
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so that the Hamiltonian is

HXXZ =
J

2

L−1∑
i=1

c†i+1ci + c†ici+1 + Jz

L−1∑
i=1

(ni − 1
2)(ni+1 − 1

2)

H∥ =
hx
2

L∑
i=1

e−iπ
∑

j<i njc†i + eiπ
∑

j<i njci

H⊥ =
L∑
i=1

hi(ni − 1
2).
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Fig. Left: as disorder strength increases the system transitions from diffusive GOE level ratio statistics to
localized Poisson statistics (from PRB 75, 155111 (2007)). Middle: My reproduction of the results using
exact diagonalization. Right: There is a crossover in the level ratio statistics with disorder strength.

Numeric Methods

Now the model presented violates particle number
conservation by the lone creation and annihilation
operators in H∥. To remedy this, but to still study
the same essential physics, we can replace this term
with another term that breaks integrability. One such
term is a next nearest neighbor hopping term

HNNN =
J ′

2

L−2∑
i=1

c†ici+2 + c†i+2ci

which importantly preserves particle number. Doing
this and taking H⊥ 7→

∑L
i=1 hini which corresponds

to changing the disorder distribution, we arrive at
the Hamiltonian studied by Oganesayan and Huse in
PRB 75, 155111 (2007). A näıve implementation in
Python may take a day to average over 100 trials at
L = 12. We can do much better than this.

The new Hamiltonian conserves particle number
which allows us to project it into the fixed parti-
cle number sector. This is roughly the equivalent
of adding two sites for no more computational cost.
Now we are interested in the average properties over
many disorder realizations, and the only thing that
changes between trials are the hi. This enables us to
cache HXXZ and HNNN as well as {ni} rather than
recalculating them with each trial. Caching enables
us to study about two more sites. This brings us up
to L = 16. Now recoding this in C++, using a com-
puter 100x more powerful, and waiting a month could
be used to get about six more sites, bringing us up
to L = 22 which is close to the state of the art L = 24.

Now we study this model with open boundaries and
J = Jz = J ′ = 2 where hi are chosen from a normal
distribution with mean 0 and standard deviation W .
We average the data over 400 disorder realizations.

Does MBL Exist?

While analytical arguments suggest that many-body
localization should exist and that there should be a
crossover between random matrix and Poisson statis-
tics, the numeric evidence at larger system sizes
comes into conflict with this. As we see by look-
ing at the crossover of the level ratio statistics, there
different system sizes crossover at disorder strengths
that increase with system lengths. This lead Ogane-
sayan and Huse to conclude that “based on spectral
statistics alone, we have thus been unable to make
a strong numerical case for the presence of a many-
body localized phase.”

Subsequently there was great interest in the ETH
to MBL phase transition, but numeric limitations
plagued the search for the transition and exploration
of its properties (if it exists). This and larger scale
numeric studies in PRE 102, 062144 (2020) and PRB
104, 201117 (2021) have inspired a crisis in faith as
to whether such a transition or localized phase even
exists. Are numerics wrong again and MBL is vin-
dicated in the thermodynamic limit, or do analytic
arguments for MBL fail somewhere?

Further Reading

I based most of my project on PRB 75, 155111 (2007)
and PRB 47, 11487 (1993). Interesting alternative
persepectives on localization are given by entangle-
ment entropy as in PRB 77, 064426 (2008) and PRL
109, 017202 (2012), and by the sensitivity of sys-
tems to boundary conditions (Thouless energy) PRB
82, 174411 (2010). Experiments claiming to observe
MBL include Science 352, 1547 (2016) and Science
364, 256 (2019). Ann. Rev. CMP 6, 15 (2015) and
RMP 91, 021001 (2019) are pedagogical reviews.
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