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Here we follow PRA 89, 022118 (2014)



Types of operators Magma

: divisibility associativity
* Linear operators

* Semigroup (such as the CPTP  Quasigroup

Unital Semigroup
semigroup-—Lindblad): inverses not magma
needed—time evolution can be  jgentity identity
irreversible Associative
e Unitary group (such as CPTP): Loop quasigrotp Monoid
inverses exist so time evolution is
always reversible (even if unlikely) associativity invertibility

Group



Lindbladian Spectra

* Time evolution by - spirals £ Im(2)
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* Ais the slowest dissipative mode: the ; o Re(2)
“dissipative spectral gap” ° o
* Real axis: pure oscillation ° '
O
* Imag axis: pure decay

* [n between: get both
* Note the flipped notion of Re and Im



Results on the steady state

 Eigenvectors of L whose eigenvalue is zero (but only some—not

closed under addition); Thm: if F has no zero eigvals, unique ss
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* For unitary operators there are N steady states

* Non-oscillating coherence : sum of projections onto pure states |, >< |
* Oscillating coherence (degeneracies): | ,>< U, | are ok too

* For finite Lindblad operators there are from 1 to N2 steady states

* These can be non-oscillating or oscillating too; work in the rotating frame of H
and then there are no oscillations



Some types of steady states

e Examples:
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Single ioure state éteady state
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Single mixed state steady state
Two classical bits
One quantum bit (note rho_01=rho_10%*)

One quantum bit and one classical bit
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Conserved Quantities

* Unitary systems
e J=JT"and [J,H]=0 [J,H]=0
 SodJ/dT=0
e Also, [e¥]T HeX =0

* Lindblad systems

* Impose [J,H]=[J,F]=0 [J,H]=[J,F;]=0 VI
* Satisfied by J such that L ™)=0 ; Z N
J=L1(J)=0 UTLU=L

* Then get conserved quantities
* and conserved Lindbladian

* Symmetry != conserved quantity!



Subspace symmetries

* In a D dimensional steady state subspace there are D conserved
guantities J such that ».=1{J} 0.

* “the number of conserved guantities is equal to the dimension of the Lie algebra of subspace symmetries”

* These generate U=e™¥ where «“u'nt)=Ute“(on)U, U and time evolution
commute

* Continuous symmetries: Unitary rotations in subspaces
* Discrete symmetries: exchange of subspaces



Global symmetries

« Symmetries of both L and L™ which satisfy utcu =,

* Example:

* Permute jump operators
e [H,U]=0 and UFU = e'fF



Anti-Unitary Symmetries

* TRS and Chiral symmetry— see New J. Phys 15, 085001 (2013)

* Contour-reversal symmetry 7-'[iL()]*T = iL(—k).
ST and MC, PRB 106, L161109 (2022)
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Thoughts on my mind

* |t seems like there are different ways to approach conserved
guantities, why approach it as Albert and Jiang did?

* |s there something we can say about the response of a steady state
with symmetries?



Symmetries and Tls

e Chiral SHS'=-H AZ
* for unitary S A
* Time-reversal THT1=H Alll |

* for anti-unitary T &
BDI

* Charge-conjugation CHC!=-H p
 for antiunitary C DIl

. |

* Non-Hermitian gl'l
¢ SHS™ =-H C

« CH'C™ =-H Cl
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* THT™=H



Operator evolution

* Schrodinger picture (trace preserving)
p= —%[H»P] +Z’Yi (LiPLI — % {LILi,P})
* Heisenberg picture (identity preserving)

L 1
Y=g x , LTXLZ.——{LTL,,-,X}
X+ o (nlxe - 5 {2,



