Symmetries of Lindbladians

Spenser Talkington
UPenn Condensed Matter Journal Club - 9 October 2023

Types of operators

- Linear operators
- Semigroup (such as the CPTP Quasigroup semigroup--Lindblad): inverses not needed-time evolution can be irreversible
- Unitary group (such as CPTP):

Group

Lindbladian Spectra

- Time evolution by

$$
\dot{\rho}=\mathcal{L}(\rho)=-i[H, \rho]+\sum_{l=1}^{N^{2}-1} 2 F_{l} \rho F_{l}^{\dagger}-F_{l}^{\dagger} F_{l} \rho-\rho F_{l}^{\dagger} F_{l}
$$

- λ are the eigenvalues of L
- Δ is the slowest dissipative mode: the "dissipative spectral gap"
- Real axis: pure oscillation
- Imag axis: pure decay
- In between: get both
- Note the flipped notion of Re and Im

Results on the steady state

- Eigenvectors of L whose eigenvalue is zero (but only some-not closed under addition); Thm: if F has no zero eigvals, unique ss

$$
e^{\mathcal{L} t}: \rho_{\mathrm{in}} \xrightarrow{t \rightarrow \infty} \rho_{\mathrm{ss}} .
$$

- For unitary operators there are N steady states
- Non-oscillating coherence : sum of projections onto pure states $\left|\psi_{n}><\psi_{n}\right|$
- Oscillating coherence (degeneracies): $\left|\psi_{n}\right\rangle<\psi_{m} \mid$ are ok too
- For finite Lindblad operators there are from 1 to N^{2} steady states
- These can be non-oscillating or oscillating too; work in the rotating frame of H and then there are no oscillations

Some types of steady states

- Examples:

$$
\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & \cdot &)
\end{array}\right),\left(\begin{array}{ccc}
\frac{1}{3} & \cdot & \cdot \\
\cdot & \frac{1}{3} & \vdots \\
\cdot & \cdot & \frac{1}{3}
\end{array}\right),\left(\begin{array}{ccc}
\rho_{00} & \cdot & \cdot \\
\cdot & \rho_{11} & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{ccc}
\rho_{00} & \rho_{01} & \cdot \\
\rho_{10} & \rho_{11} \\
\cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{ccc}
\rho_{00} & \rho_{01} & \cdot \\
\rho_{10} & \rho_{11} & \vdots \\
\cdot & \cdot & \rho_{22}
\end{array}\right)
$$

1. Single pure state steady state
2. Single mixed state steady state
3. Two classical bits
4. One quantum bit (note rho_01=rho_10*)
5. One quantum bit and one classical bit

Conserved Quantities

- Unitary systems
- J= J^{\top} and $[\mathrm{J}, \mathrm{H}]=0$
- So dJ/dT = 0

$$
\underset{J=0}{ } \quad \Leftrightarrow \quad \stackrel{[J, H]=0}{\mathbb{y}} \quad \Leftrightarrow \quad U^{\dagger} H U=H
$$

- Also, $\left[e^{i x j}\right]^{T^{*}} H e^{i x J}=0$
- Lindblad systems
- Impose [J,H]=[J,F]=0
- Satisfied by J such that $L^{T^{*} J=0}$

$$
\begin{gathered}
{[J, H]=\left[J, F_{l}\right]=0 \quad \forall l} \\
\| \\
\dot{J}=\mathcal{L}^{\dagger}(J)=0 \quad \mathcal{U}^{\dagger} \mathcal{L} \mathcal{U}=\mathcal{L}
\end{gathered}
$$

- Then get conserved quantities
- and conserved Lindbladian
- Symmetry != conserved quantity!

Subspace symmetries

- In a D dimensional steady state subspace there are D conserved quantities J such that $\rho_{\mu}=\operatorname{Tr}\left\{J_{\mu} \mu_{\rho_{n}}\right\}$.
- "the number of conserved quantities is equal to the dimension of the Lie algebra of subspace symmetries"
- These generate $\mathrm{U}=\mathrm{e}^{\mathrm{ix}]}$ where $e^{c t^{t}\left(U^{\dagger} \rho_{m_{n}} U\right)=U^{+} e^{t t}\left(\rho_{n}\right) U, \mathrm{U} \text { and time evolution }, ~}$ commute
- Continuous symmetries: Unitary rotations in subspaces
- Discrete symmetries: exchange of subspaces

Global symmetries

- Symmetries of both L and T^{*} which satisfy $\mathcal{U}^{\dagger} \mathcal{L} \mathcal{U}=\mathcal{L}$,
- Example:
- Permute jump operators
- $[\mathrm{H}, \mathrm{U}]=0$ and UFU $=\mathrm{e}^{\text {if } F}$

Anti-Unitary Symmetries

- TRS and Chiral symmetry- see New J. Phys 15, 085001 (2013)
- Contour-reversal symmetry $\mathcal{T}^{-1}[i L(\boldsymbol{k})]^{*} \mathcal{T}=i L(-\boldsymbol{k})$.
- ST and MC, PRB 106, L161109 (2022)

$$
L_{\mathrm{dis}}=\frac{\Gamma}{2}\left(\begin{array}{cccc}
A_{k}-B_{k} & -2 B_{k} & C_{k}-C_{-k}^{\top} & 2 C_{-k}^{\top} \\
-2 A_{k} & B_{k}-A_{k} & -2 C_{k} & C_{k}-C_{-k}^{\top} \\
C_{k}^{\dagger}-C_{-k}^{*} & -2 C_{-k}^{*} & B_{-k}^{\top}-A_{-k}^{\top} & 2 A_{-k}^{\top} \\
2 C_{k}^{\dagger} & C_{k}^{\dagger}-C_{-k}^{*} & 2 B_{-k}^{\top} & A_{-k}^{\top}-B_{-k}^{\top}
\end{array}\right)
$$

Thoughts on my mind

- It seems like there are different ways to approach conserved quantities, why approach it as Albert and Jiang did?
- Is there something we can say about the response of a steady state with symmetries?

Symmetries and TIs

- Chiral SHS ${ }^{-1}=-\mathrm{H}$
- for unitary S
- Time-reversal THT ${ }^{-1}=\mathrm{H}$
- for anti-unitary T
- Charge-conjugation $\mathrm{CHC}^{-1}=-\mathrm{H}$
- for antiunitary C
- Non-Hermitian
- SHS $^{* *}=-\mathrm{H}$
- $\mathrm{CH}^{*} \mathrm{C}^{T *}=-\mathrm{H}$

Symmetry				Dimension							
AZ	T	C	S	1	2	3	4	5	6	7	8
A	0	0	0	0	Z	0	Z	0	Z	0	Z
Alll	0	0	1	Z	0	Z	0	Z	0	Z	0
Al	1	0	0	0	0	0	2	0	Z_{2}	Z_{2}	Z
BDI	1	1	1	Z	0	0	0	Z	0	Z_{2}	Z_{2}
D	0	1	0	Z_{2}	Z	0	0	0	Z	0	Z_{2}
DIII	-1	1	1	Z_{2}	Z_{2}	Z	0	0	0	Z	0
All	-1	0	0	0	Z_{2}	Z_{2}	2	0	0	0	Z
ClI	-1	-1	1	Z	0	Z_{2}	Z_{2}	Z	0	0	0
C	0	-1	0	0	2	0	Z_{2}	z_{2}	Z	0	0
Cl	1	-1	1	0	0	Z	0	Z_{2}	Z_{2}	Z	0

- $\mathrm{TH}^{*} \mathrm{~T}^{\mathrm{T}^{*}}=\mathrm{H}$

Operator evolution

- Schrodinger picture (trace preserving)

$$
\dot{\rho}=-\frac{i}{\hbar}[H, \rho]+\sum_{i} \gamma_{i}\left(L_{i} \rho L_{i}^{\dagger}-\frac{1}{2}\left\{L_{i}^{\dagger} L_{i}, \rho\right\}\right)
$$

- Heisenberg picture (identity preserving)

$$
\dot{X}=\frac{i}{\hbar}[H, X]+\sum_{i} \gamma_{i}\left(L_{i}^{\dagger} X L_{i}-\frac{1}{2}\left\{L_{i}^{\dagger} L_{i}, X\right\}\right)
$$

