Symmetries of Lindbladians

Spenser Talkington

UPenn Condensed Matter Journal Club – 9 October 2023

Here we follow PRA 89, 022118 (2014)

Types of operators • Linear operators • Semigroup (such as the CPTP) Quasigroup semigroup--Lindblad): inverses not needed—time evolution can be id<mark>en</mark>tity irreversible • Unitary group (such as CPTP): Loop

inverses exist so time evolution is always reversible (even if unlikely)

Lindbladian Spectra

- Time evolution by $\dot{\rho} = \mathcal{L}(\rho) = -i \left[H, \rho\right] + \sum_{l=1}^{N^2 - 1} 2F_l \rho F_l^{\dagger} - F_l^{\dagger} F_l \rho - \rho F_l^{\dagger} F_l$
- λ are the eigenvalues of L
- Δ is the *slowest* dissipative mode: the "dissipative spectral gap"
- Real axis: pure oscillation
- Imag axis: pure decay
- In between: get both
- Note the flipped notion of Re and Im

Results on the steady state

• Eigenvectors of *L* whose eigenvalue is zero (but only some—not closed under addition); Thm: if F has no zero eigvals, unique ss

 $e^{\mathcal{L}t}:\rho_{\mathrm{in}}\xrightarrow{t\to\infty}\rho_{\mathrm{ss}}.$

- For unitary operators there are N steady states
 - Non-oscillating coherence : sum of projections onto pure states $|\psi_n\rangle < \psi_n|$
 - Oscillating coherence (degeneracies): $|\psi_n\rangle < \psi_m|$ are ok too
- For finite Lindblad operators there are from 1 to N² steady states
 - These can be non-oscillating or oscillating too; work in the rotating frame of H and then there are no oscillations

Some types of steady states

• Examples:

- 1. Single pure state steady state
- 2. Single mixed state steady state
- 3. Two classical bits
- 4. One quantum bit (note rho_01=rho_10*)
- 5. One quantum bit and one classical bit

Conserved Quantities

- Unitary systems
 - $J=J^{T*}$ and [J,H]=0
 - So dJ/dT = 0
 - Also, $[e^{ixJ}]^{T*}$ H $e^{ixJ} = 0$
- Lindblad systems
 - Impose [J,H]=[J,F]=0
 - Satisfied by J such that L^{T*}J=0
 - Then get conserved quantities
 - and conserved Lindbladian
- Symmetry != conserved quantity!

$$[J,H] = [J,F_l] = 0 \quad \forall l$$

$$\begin{bmatrix} J, H \end{bmatrix} = \begin{bmatrix} J, F_l \end{bmatrix} = 0 \quad \forall l$$

$$\swarrow$$

$$\dot{J} = \mathcal{L}^{\dagger}(J) = 0 \qquad \qquad \mathcal{U}^{\dagger}\mathcal{L}\mathcal{U} = \mathcal{L}$$

$$\vec{J} = 0 \quad \Leftrightarrow \quad U^{\dagger}HU = H$$

 $\begin{bmatrix} I & II \end{bmatrix} = 0$

Subspace symmetries

- In a D dimensional steady state subspace there are D conserved quantities J such that $\rho_{\mu} = \text{Tr}\{J_{\mu}^{\dagger}\rho_{\text{in}}\}.$
 - "the number of conserved quantities is equal to the dimension of the Lie algebra of subspace symmetries"
- These generate U=e^{ixJ} where $e^{\mathcal{L}t}(U^{\dagger}\rho_{in}U) = U^{\dagger}e^{\mathcal{L}t}(\rho_{in})U$, U and time evolution commute
- Continuous symmetries: Unitary rotations in subspaces
- Discrete symmetries: exchange of subspaces

Global symmetries

- Symmetries of both L and L^{T^*} which satisfy $\mathcal{U}^{\dagger}\mathcal{L}\mathcal{U} = \mathcal{L}$,
- Example:
 - Permute jump operators
 - [H,U]=0 and UFU = e^{if}F

Anti-Unitary Symmetries

- TRS and Chiral symmetry- see New J. Phys 15, 085001 (2013)
- Contour-reversal symmetry $\mathcal{T}^{-1}[iL(k)]^*\mathcal{T} = iL(-k)$.
 - ST and MC, PRB 106, L161109 (2022)

$$L_{\text{dis}} = \frac{\Gamma}{2} \begin{pmatrix} A_k - B_k & -2B_k & C_k - C_{-k}^{\top} & 2C_{-k}^{\top} \\ -2A_k & B_k - A_k & -2C_k & C_k - C_{-k}^{\top} \\ C_k^{\dagger} - C_{-k}^* & -2C_{-k}^* & B_{-k}^{\top} - A_{-k}^{\top} & 2A_{-k}^{\top} \\ 2C_k^{\dagger} & C_k^{\dagger} - C_{-k}^* & 2B_{-k}^{\top} & A_{-k}^{\top} - B_{-k}^{\top} \end{pmatrix}$$

Thoughts on my mind

- It seems like there are different ways to approach conserved quantities, why approach it as Albert and Jiang did?
- Is there something we can say about the response of a steady state with symmetries?

Symmetries and TIs

- Chiral SHS⁻¹=-H
 - for unitary S
- Time-reversal THT-1=H
 - for anti-unitary T
- Charge-conjugation CHC⁻¹=-H
 - for antiunitary C
- Non-Hermitian
 - $SHS^{T*} = -H$
 - $CH^*C^{T*} = -H$
 - $TH^*T^{T*} = H$

Symmetry				Dimension							
AZ	т	С	S	1	2	3	4	5	6	7	8
Α	0	0	0	0	Z	0	Z	0	Z	0	Ζ
AIII	0	0	1	Ζ	0	Z	0	Z	0	Z	0
AI	1	0	0	0	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z
BDI	1	1	1	Z	0	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	Z2	Z	0	0	0	Z	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	Z	0
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	Z
CII	-1	-1	1	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0
С	0	-1	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0
CI	1	-1	1	0	0	Ζ	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0

Operator evolution

• Schrodinger picture (trace preserving)

$$\dot{
ho} = -rac{i}{\hbar}[H,
ho] + \sum_i \gamma_i \left(L_i
ho L_i^\dagger - rac{1}{2} \left\{ L_i^\dagger L_i,
ho
ight\}
ight)$$

• Heisenberg picture (identity preserving)

$$\dot{X} = rac{i}{\hbar}[H,X] + \sum_i \gamma_i \left(L_i^\dagger X L_i - rac{1}{2}\left\{L_i^\dagger L_i,X
ight\}
ight)$$