Griffiths - Introduction Quantum Mechanics: Summary Notes, Chapter 6: Symmetries

Introduction

Symmetry is when a system property where transformation leaves the system unchanged, ex. rotation or translation.

There are translation operators:

$$
T(a) \psi(x)=\psi(x-a)
$$

There are parity operators:

$$
\Pi \psi(x, y, z)=\psi(-x,-y,-z)
$$

There are rotation operators:

$$
R_{z}(\varphi) \psi(r, \theta, \phi)=\psi(r, \theta, \phi-\varphi)
$$

A symmetry is discrete or continuous.

Translation Operators

The translation operator as defined by its effect on ψ may be Taylor expanded:
$T(a)=\sum_{n} \frac{(-a)^{n}}{n!} \frac{d^{n}}{d x^{n}}=\exp \left(-\frac{i a p}{\hbar}\right)$
Note that the translation operator is both hermitian and unitary:

$$
T=T^{\dagger}=T^{-1}
$$

Shifting the wave function is an active transformation; shifting the coordinate system is a passive transformation.

Operators may be translated as: $\langle T \psi| Q|T \psi\rangle=\langle\psi| Q^{\prime}|\psi\rangle \Rightarrow Q^{\prime}=T^{\dagger} Q T$ Find for translated operators that:

$$
Q^{\prime}(x, p)=Q(x+a, p)
$$

A system is translationally invariant iff:

$$
T^{\dagger} H T=H \Longleftrightarrow[H, T]=0
$$

For $H=E_{k}+E_{p}$, with translational symmetry with respect to $T(a)$:

$$
V(x+a)=V(x)
$$

Thm: if two operators commute, they have a complete set of simultaneous eigenstates.

$$
H \psi=E \psi ; \quad T \psi=\lambda \psi \Rightarrow \lambda=e^{i k a}
$$

Then reformulate as Bloch's theorem: $\psi(x-a)=e^{-i k a} \psi(x) \Leftrightarrow \psi(x)=e^{i k x} u(x)$ Note that $\hbar k$ is the crystal momentum.

For continuous symmetries, it is useful to consider infinitesimal translations:

$$
T(\varepsilon)=\exp (-i \varepsilon p / \hbar) \approx 1-\frac{i \varepsilon}{\hbar} p
$$

Observe the commutation relation:
$[H, T]=[H, 1-i \varepsilon p / \hbar]=0 \Longrightarrow[H, p]=0$
Momentum conservation follows from the generalized Ehrenfest theorem:

$$
\frac{d\langle p\rangle}{d t}=\frac{i}{\hbar}\langle[H, p]\rangle=0
$$

Conservation Laws

Conservation of a quantity within QM means that $\langle Q\rangle$ is independent of time.
If Q does not vary with time, then:

$$
[H, Q]=0
$$

Thence, the probability $P(n)=\left|c_{n}\right|^{2}$ is time independent, and thus conserved.

PARITY

The parity operator is both hermitian and unitary:

$$
\Pi=\Pi^{\dagger}=\Pi^{-1}
$$

Operators may be transformed as:

$$
\langle\Pi \psi| Q|\Pi \psi\rangle=\langle\psi| Q^{\prime}|\psi\rangle \Rightarrow Q^{\prime}=\Pi^{\dagger} Q \Pi
$$

Observe that under spatial inversion:

$$
\Pi^{\dagger} x \Pi=-x ; \quad \Pi^{\dagger} p \Pi=-p
$$

A system has inversion symmetry iff:

$$
\Pi^{\dagger} H \Pi=H \Longleftrightarrow[H, \Pi]=0
$$

For a system with inversion symmetry:

$$
V(x)=V(-x)
$$

These stationary states of H are also eigenstates of Π, whose eigenvalues are ± 1, so the eigenstates are even or odd.
Parity conservation for even- V follows from the general Ehrenfest theorem:

$$
\frac{d\langle\Pi\rangle}{d t}=\frac{i}{\hbar}\langle[H, \Pi]\rangle=0
$$

"Selection rules tell you when a matrix element is zero based on symmetry."
Laporte's selection rule: "electronic transitions that conserve parity wrt an inversion center are forbidden."

Rotational Symmetry

The rotation operator is expressed as:

$$
R_{z}(\varphi)=\exp \left(-\frac{i \varphi}{\hbar} L_{z}\right)
$$

For continuous symmetries, it is useful to consider infinitesimal translations:

$$
R_{z}(\varepsilon)=\exp \left(-i \varepsilon L_{z} / \hbar\right) \approx 1-\frac{i \varepsilon}{\hbar} L_{z}
$$

The position operators transform:

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\cos (\varphi) & -\sin (\varphi) & 0 \\
\sin (\varphi) & \cos (\varphi) & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

The commutation relation generally is:

$$
\left[L_{i}, Q_{j}\right]=i \hbar \epsilon_{i j k} Q_{k}
$$

If $V=V(r)$, then $[H, L]=0$, and thus angular momentum conservation follows from the Ehrenfest theorem.

Class	Parity	Rotations
true vector	$\{\Pi, Q\}=0$	$[L, Q]=\ldots$
pseudovector	$[\Pi, Q]=0$	$[L, Q]=\ldots$
true scalar	$[\Pi, Q]=0$	$[L, Q]=0$
pseudoscalar	$\{\Pi, Q\}=0$	$[L, Q]=0$

DEGENERACY

"Symmetry is the source of most of the degeneracy in quantum mechanics."
If $[H, Q]=0$, then $Q|\psi\rangle$ may be a new state with the same energy as $|\psi\rangle$.

Also, "the presence of non-commuting symmetry operators guarantees some degeneracy of the energy spectrum."

Rotation Selection Rules

Rotational selection rules are entirely given by the Wigner-Eckart Theorem.
For scalar operators, and a constant c :
$\left\langle n^{\prime} l^{\prime} m^{\prime}\right| Q|n l m\rangle=c \delta_{l l^{\prime}} \delta_{m m^{\prime}}\left\langle n^{\prime} l\right| Q|n l\rangle$
For vector operators with constants times by Clebsch-Gordan coefficients:

$$
\begin{aligned}
\left\langle n^{\prime} l^{\prime} m^{\prime}\right| V_{+}|n l m\rangle & =c_{+}\left\langle n l^{\prime}\right| V|n l\rangle \\
\left\langle n^{\prime} l^{\prime} m^{\prime}\right| V_{-}|n l m\rangle & =c_{-}\left\langle n l^{\prime}\right| V|n l\rangle \\
\left\langle n^{\prime} l^{\prime} m^{\prime}\right| V_{z}|n l m\rangle & =c_{z}\left\langle n l^{\prime}\right| V|n l\rangle
\end{aligned}
$$

Which is the selection rule that:
$\Delta l=\{-1,0,1\} ; \quad \Delta m=\{-1,0,1\}$
This is useful for atomic transitions.

Translations in Time

A time translation operator is given as:

$$
U(t) \Psi(x, 0)=\Psi(x, t)
$$

The time translation operator may be defined by its effect on Ψ, as may be Taylor expanded around 0 :

$$
U(t)=\sum_{n} \frac{t^{n}}{n!} \frac{\partial^{n}}{\partial t^{n}}=\exp \left(-\frac{i t}{\hbar} H\right)
$$

Operators may be transformed as:

$$
Q_{H}(t)=U^{\dagger} Q U
$$

This inspires three pictures of QM , based upon what evolves in time:

Schrödinger picture	$\psi(t)$	Q
Heisenberg picture	ψ	$Q(t)$
Interaction picture	$\psi(t)$	$Q(t)$

Time translation invariance holds when $\partial_{t} H=0$, and by Ehrenfest theorem, energy is conserved. Noting the thm:

$$
\frac{d}{d t}\langle Q\rangle=\frac{i}{\hbar}\langle[H, Q]\rangle+\left\langle\frac{\partial Q}{\partial t}\right\rangle
$$

