
Solving 2nd Order Linear Homogeneous ODEs with Constant Coefficients

Consider the equation:
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One may then write the characteristic equation:
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Whose roots are:
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The solution is then for some α±:
x(t) = α+e

λ+t + α−e
λ−t

Where α± are determined by the boundary values.

Example: simple harmonic oscillator

A spring block system has a restoring force kx and starts with the block at rest at x = A. The block’s mass
is m. Describe the subsequent motions.

Newton’s Law states:
F = ma

So:
−kx = ma

Or:
mẍ+ 0ẋ+ kx = 0

Thus:
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And:
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Hence:
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The boundary values give a system of equations:
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Whose solution is α+ = α− = A/2, so, with cos(x) = (eix + e−ix)/2:

x(t) =
Aei

√
k/m t +Ae−i

√
k/m t

2
= A cos(

√
k/m t)




