Solving 2nd Order Linear Homogeneous ODEs with Constant Coefficients

Consider the equation:
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One may then write the characteristic equation:
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Whose roots are:
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The solution is then for some a:
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z(t) = ayre™t +a_e

Where a4 are determined by the boundary values.

Ezxample: simple harmonic oscillator

A spring block system has a restoring force kx and starts with the block at rest at z = A. The block’s mass
is m. Describe the subsequent motions.

Newton’s Law states:

F =ma
So:
—kxr =ma
Or:
mi+0x+kr=0
Thus:
m A 4+0A+k=0
And:
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The boundary values give a system of equations:
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Whose solution is a = a_ = A/2, so, with cos(z) = (' + e~ ) /2:
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z(t) = Ae —|—2Ae = Acos(v/k/mt)






