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Non-equilibrium quantum systems can exhibit fundamentally different qualitative behavior than their equilibrium counterparts. 
Here we leverage Keldysh Green’s functions to develop a linear and non-linear response formalism to probe the properties of 
open quantum systems subject to dissipative evolution by Lindbladian superoperators. We present results for fermionic systems 
and place a specific emphasis on optical conductivity and the example of Bernal bilayer graphene. Contrary to Hermitian systems:
1. The diamagnetic response may be real and exceptional points manifest themselves in the    -resolved diamagnetic response
2. The paramagnetic response has a similar magnitude to the equilibrium system but does not manifest universal Dirac behavior
3. Asymmetric dissipation can enable a second order response in a centrosymmetric system

Lindbladian Systems
Lindbladians are the class of (non-Hermitian) time 
evolution super-operators,                 , of the density 
matrix that are completely positive trace preserving 
(CPTP) and Markovian [1]. Explicitly, 

which governs the evolution of a subsystem   with 
jump operators     that change the particle number 
and energy of the subsystem.       are normalized and
       sets the rate of jumps.  For linear jump operators 

We can interpret the jump operators as 
measurement operators in the limit of continuous 
measurement by a memoryless observer. Physically 
this could correspond to (1) qubits in a quantum 
circuit subject to continuous measurements, (2) 
photons in a leaky cavity subject to jumps to and 
from free space modes, or (3) a 1D/2D material with 
jumps to and from a substrate.

Spectral Decomp. and Occupation

The right,       , and left,
eigenvectors can decompose the Green’s function as
 

and

Where      and     . Now, the equal-
time inter-orbital correlation function (occupation) is

Example: Bernal Bilayer Graphene

System
Bernal bilayer graphene is 
a paradigmatic platform 
for realizing 2D electronic 
physics. Here we couple 
the bilayer to two baths 
and study the electronic 
response of the system.
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Complex Fermion Representation
For Lindbladians that are quadratic in fermions, we 
can extend Prosen’s “third-quantization” algebra [2] 
to place different parity sectors on equal footing.  
Doing so enables a concise matrix representation of 
the Lindbladian in terms of left- and right-contour 
super-fermions whose eigenfunctions are the 
normal modes of the full Lindbladian [3].  It reads

with the basis                  , where the left and right 
super-fermions  are  given  by                                   and 

      respectively for fermion parity    .

The single particle matrix forms are (suppressing    )

Where the blocks are (outer product with         )

Once formulated as a path integral, this description 
has a redundancy that can be removed using the 
Larkin-Ovchinnikov rotation to find                         and

in terms of the modified fields      .

Keldysh Green’s Functions
We can obtain the generating functional       as a 
path integral, where the Keldysh action is given by [4]

Where the Green’s function block is 

From which,

The paramagnetic current-current correlation function is 
the retarded response,
which can be evaluated by:
• Wick Expansion
• Reexpress as GFs
• Lehmann Representation
• Fourier Transform
• Residue Theorem
Note: 

Linear Optics

Non-Linear Optics

Triangle Feynman Diagrams
For the second order response, the “new” contribution 
is [5]

Second Harmonic Generation and Shift
Second harmonic generation is given by the contraction

Meanwhile, shift is a non-linear DC response given by

For the full     , diagrams like   and     matter.

Non-Linear Optics
Inversion symmetry breaking induced in the system by 
the bath enables a second order response as  

Spectrum and Occupation
We consider the low energy behavior (near      ) for 
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Linear Optics

Diamagnetic Term
Let us consider a density response
corresponding to an instantaneous diamagnetic current

The conductivity is a rescaling
given by          .

Paramagnetic Term
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GR
=

∑
m

|um〉〈ūm|
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The -space resolved diamagnetic 
response diverges at exceptional 
points and can be used to identify 
this non-Hermitian spectral feature.

k

We use a tight-binding model
for the bilayer [6] and consider a current described by 
single fermion jumps with anisotropic couplings to baths
J in

A/B = Γ(1 + γ)c†
1A/B , Jout

A/B = Γ(1− γ)c2A/B

K Γ=1

Our Previous Works
Lindbladians exhibit rich band structure phenomenology 
including a novel mechanism to realize flat bands as 
discussed in (PRB 106, L161109 (2022)), and large angle 
structures such as Bernal bilayer graphene and its 
generalizations exhibit extensively tunable low energy 
optical responses (PRB 107, L041408 (2023)) and unusual 
circular dichroic behavior (arXiv:2305.14472 (2023)).
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