
Abelian Lattice Gauge Theories and Classical Electromagnetism Spenser Talkington

VI. A: General Formalism

Planar spins can be written as

s(~n) =

(
cos(θ(~n))
sin(θ(~n))

)
where ~n indicates the position in space (on the lattice).
A action is then

S = −J
∑
~n,~µ

s(~n) · s(~n+ ~µ)

which with

cos(x− y) = cos(x) cos(y) + sin(x) sin(y)

becomes

S = −J
∑
~n,~µ

cos(θ(~n)− θ(~n+ ~µ))

where observables will be derived from the generating functional

Z = eiS/~

One can then introduce the difference operator

∆~µθ(~n) = θ(~n+ ~µ)− θ(~n)

so that

S = −J
∑
~n,~µ

cos(∆~µθ(~n))

Note that

θ(~n+ ~µ)− α− (θ(~n)− α) = θ(~n+ ~µ)− θ(~n)

so the spins can be rotated through an angle α without changing the action. I.e. θ(~n) 7→ θ(~n)− α.

Now let us consider a different model for which there are spins on the links between sites (~n, ~µ). Clearly
(~n, ~µ) = (~n + ~µ,−~µ) so the angular variable θ~µ(~n) on (~n, ~µ) should be related to the angular variable on
(~n+ ~µ,−~µ). Here we choose to tilt our heads so that

θ−~µ(~n+ ~µ) = −θ~µ(~n)

One can then define the discrete curl

θ~µ~ν = ∆~µθ~ν(~n)−∆~ν(~n)θ~µ(~n)

which is an antisymmetric tensor just like εµν . Now, by the definition of ∆~µ we have

θ~µ~ν = θ~ν(~n+ ~ν)− θ~ν(~n)− θ~µ(~n+ ~µ) + θ~µ(~n)

or shuffling terms and using θ−~µ(~n+ ~µ) = −θ~µ(~n) this becomes

θ~µ~ν = θ~µ(~n) + θ~ν(~n+ ~µ) + θ−~µ(~n+ ~µ+ ~ν) + θ−~ν(~n+ ~ν)

As before we have invariance of this curl since under the gauge transformation

θ~µ 7→ θ~µ(~n+ ~µ)− χ(~n)

since

θ−~µ(~n+ ~µ) 7→ θ−~µ(~n+ ~µ) + χ(~n)

so for each positive direction θ there is a negative direction θ and the positive and negative χ terms cancel.
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Now let us recall that in electromagnetism there is an antisymmetric tensor

Fµν = ∂µAν − ∂νAµ

that is gauge invariant under gauge transformations

Aµ 7→ Aµ + ∂µχ

The Maxwell action is then

SM =
1

4

∫
dDx FµνFµν

The discrete curl is a rank-2 antisymmetric tensor so we may be able to contrive an action for our spin model
that recreates electromagnetism to lowest order in θ~µ~ν . Four such actions are

S1 = J
∑
~n,~µ,~ν

(1−
√

1− θ2
~µ~ν(~n))

S2 =
J

2

∑
~n,~µ,~ν

ln(1 + θ2
~µ~ν(~n))

S3 = J
∑
~n,~µ,~ν

(1− cos(θ~µ~ν(~n)))

S4 =
J

2

∑
~n,~µ,~ν

sin(θ~µ~ν(~n))θ~µ~ν(~n)

Let’s think about these actions.

The first action isn’t real for |θ~µ~ν | > 1 so we throw it out, even though we will be interested in physics for
θ~µ~ν << 1. The second action has a global minimum at θ~µ~ν = 0 and monotonically increases with |θ~µ~ν |. The
third action is periodic. The fourth action oscillates, but the minimum at zero isn’t the global minimum so
we disregard it. So we are left with the second and third actions. Now Kogut chooses the third one since
it is periodic in θ~µ~ν so that it is something we can plausibly believe recreates the physics of a lattice—even
though by expanding for small θ~µ~ν we inherently don’t care about the periodicity of the action. Here we
refrain from making a choice.

Let us now expand so that

S =
J

2

∑
~n,~µ,~ν

θ2
~µ~ν(~n)

If we squint at this it becomes

S =
J

2

∫
dDx

aD
θ~µ~ν(~x)θ~µ~ν(~x)

where we use implicit summation over the ~µ and ~ν indices.
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We can then insist that these really are the same theory and compare terms and see that(
J

2aD

)1/2

θ~µ~ν(~x) =
1

2
Fµν

or, identifying µ with ~µ and ν with ~ν, we have

Aµ(~x) =
1

a

(
aD

2J

)1/2

︸ ︷︷ ︸
“1/g”

θ~µ(~x)

where g is the coupling constant of the theory, and the 1/a comes from the discrete going to continuous
derivative.

One can then make deep philosophical points like: “oh my, is the universe really made of microscopic degrees
of freedom whose low energy behavior gives electromagnetism.” Sure, but which degrees of freedom? As we
saw there are an infinite number of actions that lead to the same low energy behavior.

Aside About Wilson Loops

Now we have a coupling constant between a charge (recall electromagnetism supports quantization of a
massless spin-1 gauge boson). One can then draw this diagrammatically. One might imagine that the rule is

ū(~x+ ~ξ)γµu(~x)

for Dirac matrices γ and translations ~ξ in real space. But this isn’t gauge invariant under Aµ(~x) 7→ Aµ(~x) +
∂µΛ(~x) since we have

ū(~x+ ~ξ)γµu(~x) 7→ e−ieΛ(~x+~ξ)ū(~x+ ~ξ)γµe
ieΛ(~x)u(~x)

where the exponentials only cancel if Λ(~x) = Λ(~x+ ~ξ).

We can squint at this and say “a ha, I know the fundamental theorem of calculus so a gauge invariant
quantity is”

ū(~x+ ~ξ)γµe
ie

∫ ~x+~ξ
~x

dxµAµu(~x)

since

A(x+ ξ) = A(x) +

∫ x+ξ

x

dx̄ A′(x̄)

This is known as the Peierls substitution, which is also attributed to Schwinger. This is also known as the
Wilson line

W (~x, ~x+ ~ξ) = eie
∫ ~x+~ξ
~x

dxµAµ

If we close a Wilson line so that it traverses a contour C then

W (C) = eie
∮
C
dxµAµ

which is known as the Wilson loop for contour C over connection A. It is straightforward to show that a
Wilson loop is independent of basepoint ~x. (Note that this exponential is path-ordered which is important
for non-Abelian connections).
In the language of differential geometry, we refer to this as a holonomy over a fiber bundle, where A is the
connection that defines the parallel transport.
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VI. C: The Quantum Hamiltonian Formulation

In this section we will stop using vector notation, i.e. n = ~n.
Let us consider an action with anisotropic couplings (note the suggestive naming β)

S = 2βτ
∑
n,j

(1− cos(θ0j))− βx
∑
n,i,j

cos(θij(n))

where we choose a gauge so that

θ0(n) = 0

from which it follows that τ -independent gauge transformations are local symmetries of the system.
We then have for βτ infinite, infinitesimal θ0j so that

1− cos(θ0j) ≈
1

2
θ2

0j =
1

2
a2
τ

(
∂θj
∂τ

)2

In the infinitesimal spacing limit we can also take∑
n,j

→
∫
dτ

aτ

∑
n,j

where the n on the left is n = (nτ , nx) while the right is n = (0, nx).
The action is then

S =

∫
dτ

βτaτ∑
n,j

(∂τθj(τ, n))2 − βx
aτ

∑
n,i,j

cos(θij(τ, n))


One can then look at this in terms of the small aτ limit. In this limit we see that βτ ∼ 1/aτ and βx ∼ aτ
must hold for the behavior to be well defined. Let

βτ = g2
τ/aτ

βx = g2
xaτ

where gτ and gx are real scalars. Substituting, we have

S =

∫
dτ

g2
τ

∑
n,j

(∂τθj(τ, n))2 − g2
x

∑
n,i,j

cos(θij(τ, n))


One can then rescale g2

τ = sg2 and g2
x = s/g2 so that

S = s

∫
dτ

g2
∑
n,j

(∂τθj(τ, n))2 − 1

g2

∑
n,i,j

cos(θij(τ, n))


where s sets the overall scale of the action. Now if we look at this we see that it is ripe for the application of
perturbation theory. If g >> 1 then the second term can be treated as a perturbation, while if g << 1 then
the the first term can be treated as a pertubration.
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Now, we want to deal with a Hamiltonian and not a Lagrangian density/action, so we consider the conjugate
momentum to θj(n)—call it Lj(n). The position and its conjugate momentum satisfy

[x, p] = i

so it seems reasonable to believe that

[θi(n), Lj(m)] = i δijδnm

where we differ from Kogut by rotating the spins by π so that θi(n) 7→ θi(n) + π = −θi(n) so that the
structure of the commutator is the same as the one we are familiar with. Now, this commutation relation is
expected based on the general relation between position and conjugate momentum, and also based on the
relation between periodicity in space under rotations for usual angular momentum, and periodicity in space
under translations for this analogue to angular momentum.

To go from a Lagrangian density to a Hamiltonian density we have

H = pẋ− L

= (
∑
j

Lj θ̇j)− L

So taking this similar procedure here we have the Hamiltonian

axH =
∑
n,j

g2L2
j (n)− 1

g2

∑
n,i,j

cos(θij(n))

Now, τ -independent local gauge transformations will add the same angle to all the spins connected to a
vertex. An operator that does this for us is

Gχ(n) = e−i
∑
±j Lj(n)χ

which is the rotation operator that takes

θi(n) 7→ θi(n)− χ

for all links i connected to vertex n. So a local gauge transformation that acts on all sites in the lattice is

G(χ) = e−i
∑
n,±j Lj(n)χ(n)

for which the Hamiltonian is gauge invariant since to first order in the exponential

G(χ)θj(n)G−1(χ) = θj(n)− χ(n) + χ(n+ j) = θj(n) + ∆jχ

so that

G(χ)HG−1(χ) = H

where G is a unitary matrix that squares to the identity and commutes with the Hamiltonian

[G(χ), H] = 0

Also, Elitzur’s theorem ensures that the space of states is invariant under this gauge transformation too.
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Now, we consider the commutation relation

[θi(n), Lj(m)] = iδijδnm

From Section VI. A, we have

Aµ(n) =
1

aµ

(
aDx
2J

)1/2

︸ ︷︷ ︸
“1/g”

θµ(n)

for positions n and coupling constant g. This means that we can rewrite

aig[Ai(n), Lj(m)] = iδijδnm

or, with lima→0 δnm/a
3
x = δ(rn − rm) where for the continuum limit we write rn for n and rm for m. We

then have
aig

a3
x

[Ai(n), Lj(m)] = iδijδ(rn − rm)

and we can name Ej(m) = (ajg/a
3
x)Lj(m) so that

[Ai(n), Ej(m)] = iδijδ(rn − rm)

We can now say a few things. Firstly, by the identications above we have pushed the lattice commutation
relation into the commutation relation for the continuum theory of electromagnetism where A is the vector
potential and E is the scalar potential. Additionally since θ was an angular position (which is periodic)
and L was its conjugate momentum, L has a discrete spectrum given by Lj(n) ∈ Z. Combining these, we
see that the electric field arising from this lattice theory is discretized: “Electric flux cannot subdivide into
arbitrarily small units on individual links,” where the quantized charge is proportional to g. This originates
from the fact that A lives on a compact manifold—here S1, i.e. the underlying gauge group is U(1); if we
had chosen a different underlying gauge group we could have a different notion of quantized charge (and we
could get a non-Abelian gauge theory).

Having made these identifications, we can return to the Hamiltonian

axH =
∑
n,j

g2L2
j (n)− 1

g2

∑
n,i,j

cos(θij(n)) =
∑
n,j

a6
x

a2
j

E2
j (n)− 1

g2

∑
n,i,j

cos(θij(n))

and we see that the first term looks a lot like the energy stored in the electric field∫
vol

dD−1x EµEµ

We then hope that the second term will be like the energy stored in the magnetic field∫
vol

dD−1x BµBµ

So with cos(θij(n)) ≈ 1− θ2
ij(n)/2 we identify

θij =
√

2a2
xgBk

so that

axH =
∑
n,j

a6
x

a2
k

E2
j (n) +

∑
n,k

a4
xB

2
k(n)

whence with aj = ax

H =
∑
n,j

a3
xE

2
j (n) + a3

xB
2
j (n)

where we arrive at our Hamiltonian (for D = 3 + 1).
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Now that we have seen that a lattice model can recreate key features of classical electromagnetism, let
us recreate Gauss’s law. We generalize these conjugate momenta L so that the generator of local gauge
transformations is

L(n) +
∑
j∈Z

Lj(n)

so that

G(χ) = e−i
∑
n L(n)χ(n)−i

∑
n,j Lj(n)χ(n)

whence

G(χ)e±iθ(n)G−1(χ) = e±i(θ(n)−χ(n))

Now we seek an operator that places charges ±g at positions 0 and R respectively. A plausible gauge-invariant
quantity is

θC(0, R) = eiθ(0)e−i
∑
i∈C θCi (n)e−iθ(R)

where e−i
∑
C θCi (n) is the connection.

Due to the commutation relation, this leads to the a unit of flux being generated on each link along C, which
is precisely Gauss’s law.

Now we ask: which contour minimizes the energy?

If g2 >> 1 then the “electric” term dominates and the energy per link is a positive constant so the minimum
energy contour is the shortest contour, and the energy of the contour grows linearly in R. This is known as
“quark confinement” since the coefficient is large, and corrections to this make it favorable to generate new
quarks (E = mc2) rather than to increase the length of this contour, or “flux tube”.

If g2 << 1, e.g. if g2 = 4π/137.036, then normal electromagnetism is recovered (where energy does not
grow with path length and charges are not confined) and the contours are those of the electric dipole which
permeate space.
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