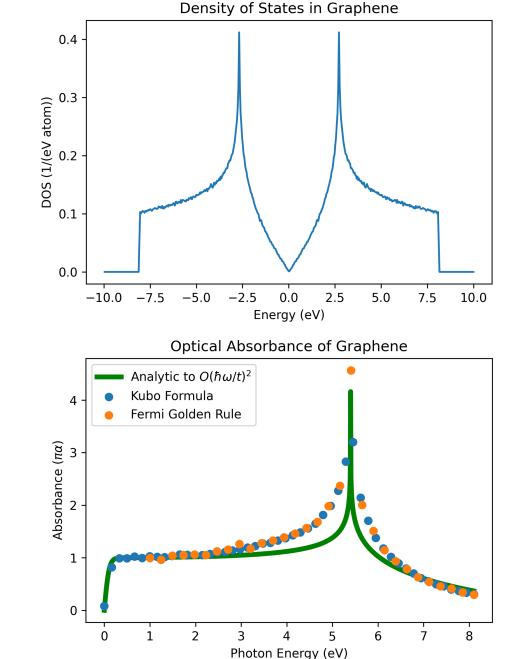
Optical Absorbance of ß-Bi₄X₄

Physics REU Symposium, University of Texas at DallasSpenser Talkington (UCLA), and Fan Zhang (UTD)4 August 2020

Optical Properties of Solids

- Optical properties of solids are readily measured in experiments
- We care about optoelectronic properties because they have device applications and they help us understand materials
- Properties include absorbance, which is the amount of energy absorbed per energy incident
- Graphene's quantized absorbance¹



Bismuth Bromide and Bismuth Iodide

- Quasi-one-dimensional van der Waals materials
 - Strands that form layers that stack
 - Protected surface states in beta phase: it is a weak topological insulator^{1,2}
 - Protected edge states in alpha phase: it is a higher-order topological insulator³
- Two forms:
 - AA stacking (beta phase)
 - AB stacking (alpha phase)

 β -Bi₄I₄ structure⁴

¹ Zhang et al PRL 116, 066801 (2016)
² Noguchi et al Nature 566, 518 (2019)
³ Yoon, et al arXiv:2005.14710 (2020)
⁴ Dikarev et al RCB 50(12), 2304 (2001)

The Bulk Hamiltonian (Bloch Hamiltonian)

• In lattices (discrete translational invariance), Bloch's Theorem holds, where $u_n(r)$ is a function with the periodicity of the lattice and k is a wavevector:

 $\psi_n(r) = \exp(ik \cdot r) \, u_n(r)$

• The periodic functions $u_n(r)$ are given by the Bulk Hamiltonian, $\mathcal{H}(k)$:

$$\mathcal{H}(k) u_n(r) = \epsilon_n u_n(r)$$

• We define the valence states to be:

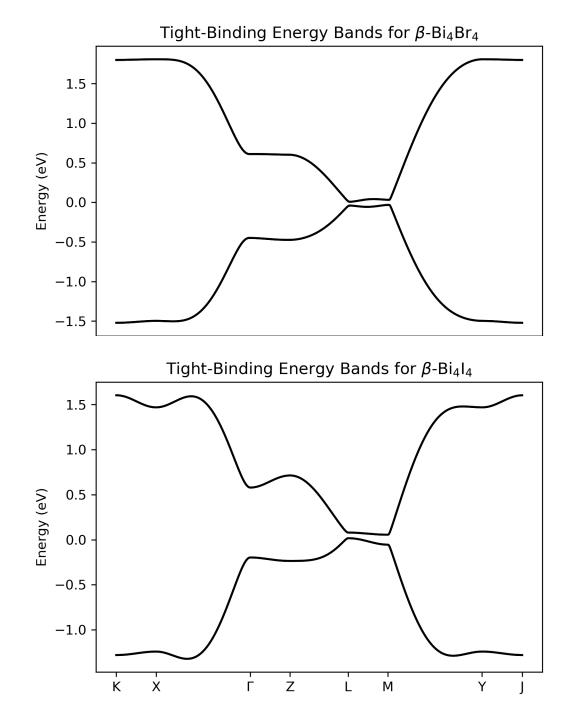
$$v_n = \psi_n(r)$$
 such that $\epsilon_n < 0$

• We define the conduction states to be:

$$c_n = \psi_n(r)$$
 such that $\epsilon_n > 0$

Energy Bands of ß-Bi₄X₄

- Energy bands: diagonalize Hamiltonian
- Tight-binding model Hamiltonian
 - Onsite energies
 - Transfer energies
 - Phase accumulation (Peierels)
- How to get a tight-binding model?
 - First principles density functional theory calculations leads to maximally localized Wannier function tight-binding models
 - Symmetry considerations and restrict to nearest neighbor transfers
 - This has been done in the literature¹



¹ Yoon, et al arXiv:2005.14710 (2020)

Absorbance

• Absorbance is the fraction of the incident power absorbed:

$$P = \frac{W_{absorbed}}{W_{incident}}$$

• Incident light carries energy flux (Poynting Vector, in Gaussian units):

$$W_{\rm incident} = \frac{\omega^2 |A|^2}{4\pi c}$$

• From a conductance standpoint (Ohm's Law):

$$W_{\text{absorbed}} = \begin{pmatrix} E_{\chi} \\ E_{y} \\ E_{z} \end{pmatrix}^{\dagger} \begin{pmatrix} \sigma_{\chi\chi} & \sigma_{\chiy} & \sigma_{\chiz} \\ \sigma_{\chi\chi} & \sigma_{\chiy} & \sigma_{\chiz} \\ \sigma_{z\chi} & \sigma_{zy} & \sigma_{zz} \end{pmatrix} \begin{pmatrix} E_{\chi} \\ E_{y} \\ E_{z} \end{pmatrix}$$

The Current Operator

• In electromagnetism, the current operator is $j = \sigma E$, or if $E = E^{\beta} \hat{\beta}$:

$$j^{\alpha} = \sigma_{\alpha\beta} E^{\beta}$$

• In the single-particle framework, the current operator is, for direction $\alpha = x, y, \text{ or } z$:

$$j^{\alpha} = ev^{\alpha}$$

• Now, we note that for the free particle Hamiltonian:

$$\frac{\partial H_0}{\partial p} = \frac{\partial p^2 / 2m}{\partial p} = \frac{p}{m} = v$$

• This motivates the gradient approximation:

$$v^{\alpha} = \frac{\partial \mathcal{H}(k)}{\partial p^{\alpha}}$$

• So the current operator is, with $p^{\alpha} = \hbar k^{\alpha}$:

$$j^{\alpha} = \frac{e}{\hbar} \frac{\partial \mathcal{H}(k)}{\partial k^{\alpha}}$$

Linear Response: the Kubo Formulism

• For the conductivity, integrate over the Brillouin Zone (k-space):

$$\sigma_{\alpha\beta}(\hbar\omega,\eta) = i \frac{e^2}{\hbar} \sum_{c,\nu} \int_{BZ} \frac{d^{\dim}k}{(2\pi)^{\dim}} \frac{f(\epsilon_{\nu}) - f(\epsilon_{c})}{\epsilon_{c} - \epsilon_{\nu}} \frac{\hbar v_{\nu c}^{\alpha} \hbar v_{c\nu}^{\beta}}{\hbar\omega - (\epsilon_{c} - \epsilon_{\nu}) + i\eta}$$

• In the gradient approximation:

$$\hbar v_{vc}^{\alpha} \ \hbar v_{cv}^{\beta} = \left\langle v(k) \left| \frac{\partial \mathcal{H}(k)}{\partial k^{\alpha}} \right| c(k) \right\rangle \left\langle c(k) \left| \frac{\partial \mathcal{H}(k)}{\partial k^{\beta}} \right| v(k) \right\rangle$$

• The Fermi-Dirac distribution function is:

$$f(\epsilon) = (\exp(\epsilon/k_{\rm B}T) + 1)^{-1}$$

How to Calculate Absorbance? (the kubo way)

- Choose system
- Find bulk Hamiltonian, H
- Find eigenenergies and eigenfunctions of ${\cal H}$
- Specify polarization \hat{E} , frequency ω , temperature T, and broadening η
- Calculate the conductivity tensor (with Kubo)
 - At each point in the BZ, find conductivity matrix elements and evaluate; sum over these points
- Find the energy absorbed $W(\omega) = E^{\dagger}\sigma(\omega)E$
- Find the absorbance $P(\omega) = W_{abs}/W_{inc}$

Absorbance of ß-Bi₄X₄

sensitive figures removed

Conclusions

- Results
 - As expected from its anisotropic structure, ß-Bi₄X₄ has a correspondingly anisotropic absorbance
 - Absorbance is as would be expected from the density of states
 - The monolayer system has substantially *lower* absorbance than the full system
 - ß-Bi₄X₄ are real materials and expect our predictions to agree with experiments
- Future directions:
 - Compare and contrast alpha and beta phases
 - Address other optical properties such as the photocurrent
 - Consider the optical properties of surface/edge states

Questions?