Non-Abelian Fundamental Groups, the Second Homotopy Group and Exact Sequences

Spenser Talkington – 20 June 2022 Algebraic Topology in Physics Seminar University of Pennsylvania Organizer: Randall Kamien

Outline

- Two (somewhat) disjoint topics
- 1. Non-Abelian fundamental groups
- 2a. The second homotopy group
- 2b. Applications to quantum condensed matter physics

VI. Non-Abelian Fundamental Groups

Biaxial Nematic Liquid Crystals

- Treat as rectangular prisms
 - Identity
 - Inversion
 - π rotations (3)
 - -π rotations (3)
- This is a group
 - The quaternion group
 - It is non-abelian

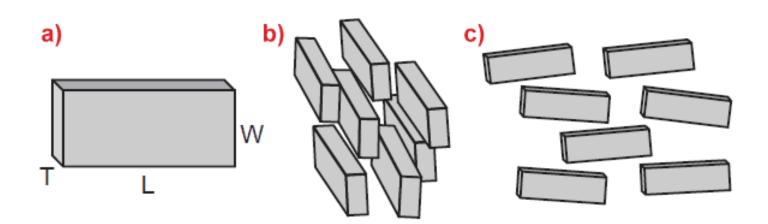


Image Credit: ESRF

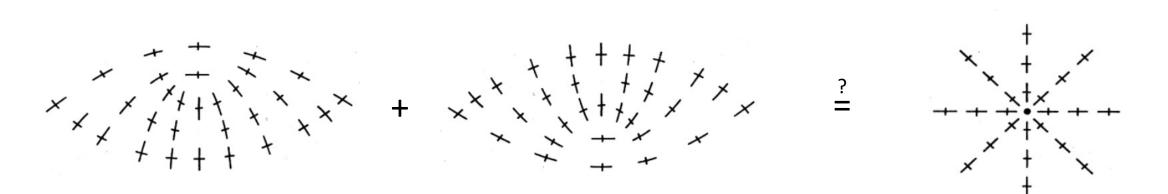
Quaternions

- Representation w/ Pauli matrices
 - H = {±1, i=±is_x, j=±is_y, k=±is_z}
- Reduces to 5 conjugacy classes
 - C_0 , \underline{C}_0 , C_x , C_y , C_z
- Group multiplication table
 - Some elements are non-commuting
- Class multiplication table
 - Class multiplication is abelian so there is no notion of enclosing defects first

1	i	-1	-i	j	k	$-\mathbf{j}$	$-\mathbf{k}$	
1	i	-1	-i	j	k	- j	$-\mathbf{k}$	
i	-1	$-\mathbf{i}$	1	j	- j	$-\mathbf{k}$	j	
- 1	— i	1	i	— j	$-\mathbf{k}$	j	k	
j	$-\mathbf{k}$	— j	k	- 1	i	1	- i	
- j	k	j	- k	1	- i	-1		
$-\mathbf{k}$	— j	k	j	i	1	- i	- 1	
C_{0}	\overline{C}_{o}	С	C_x		y	C_z		
C_{0}	\overline{C}_{0}	C	Cx		Cy		Cz	
\overline{C}_{0}	C_{0}	C				Cz		
C_x	C_x		$2C_0 + 2\overline{C}_0$		$2C_z$		$2C_y$	
C_{y}	C_y	2	$2C_z$		$2C_0 + 2\overline{C}_0$		$2C_x$	
	C_{z}	2	2Cy		$2C_x$		$2C_0 + 2\overline{C}_0$	
	$ \begin{array}{c} 1\\ i\\ -1\\ -i\\ j\\ k\\ -j\\ -k\\ \hline C_{0}\\ \hline C_{0}\\ \hline C_{0}\\ \hline C_{0}\\ \hline C_{x}\\ \hline C_{y}\\ \end{array} $	$1 i$ $i -1$ $-1 -i$ $-1 -i$ $-i 1$ $j -k$ $k j$ $-j k$ $-k -j$ $C_{0} \overline{C}_{0}$ $C_{0} \overline{C}_{0}$ $\overline{C}_{0} \overline{C}_{0}$ $\overline{C}_{0} C_{y}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					

The 2π Point Defect is not the Trivial Defect

- One can imagine two line defects (generated by C_i for example) forming a 2π defect of annihilating each other
- The question: When will two π defects merge to create a 2π defect versus annihilating to a trivial defect?



Ex. Two z-Disclinations

- Case 1: no other disclinations
 - Combines to a 2π point defect
 - $-1 = (i\sigma_z)(i\sigma_z)$

- Case 2: one other disclination
 - Decays via "catalysis"

$$-(i\sigma_z) = (i\sigma_x)(i\sigma_z)(i\sigma_x)^{-1}$$
$$1 = (i\sigma_z)(-i\sigma_z)$$

Schematic of part of the decay process

Overall Guidance

- Based \rightarrow fundamental group elements
 - The order matters

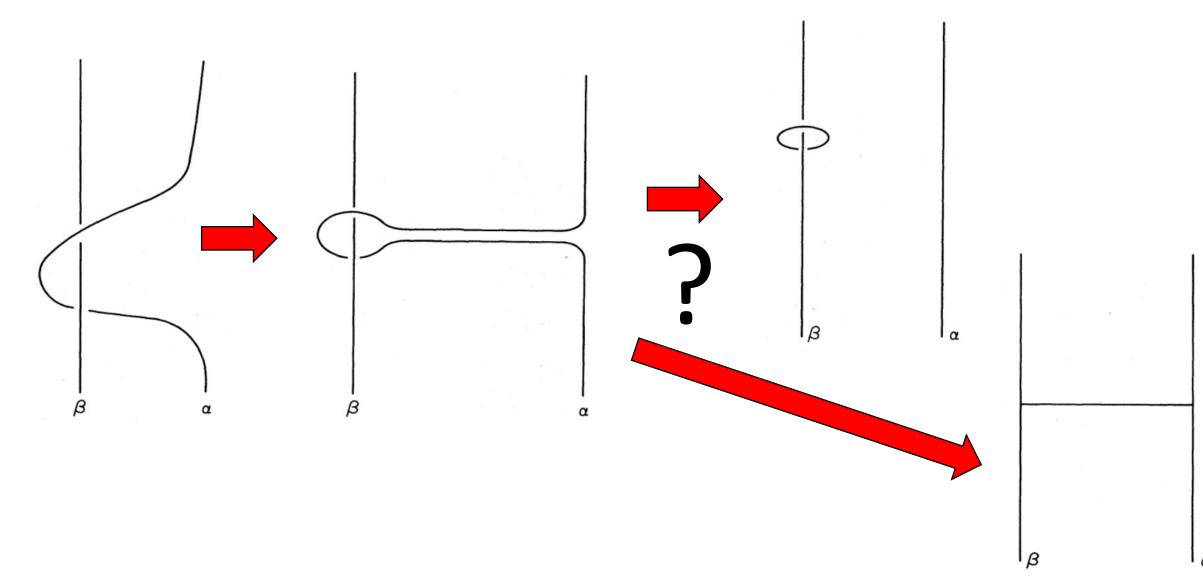
 $(i\sigma_x)(i\sigma_z)(i\sigma_z) \neq (i\sigma_z)(i\sigma_z)(i\sigma_z)$

- Un-based \rightarrow conjugacy classes
- Conjugacy classes can be ambiguous
 - This ambiguity is lifted by the contour and what is within it
 - Conjugacy classes combine in an Abelian fashion
 - Think about the example from the last slide

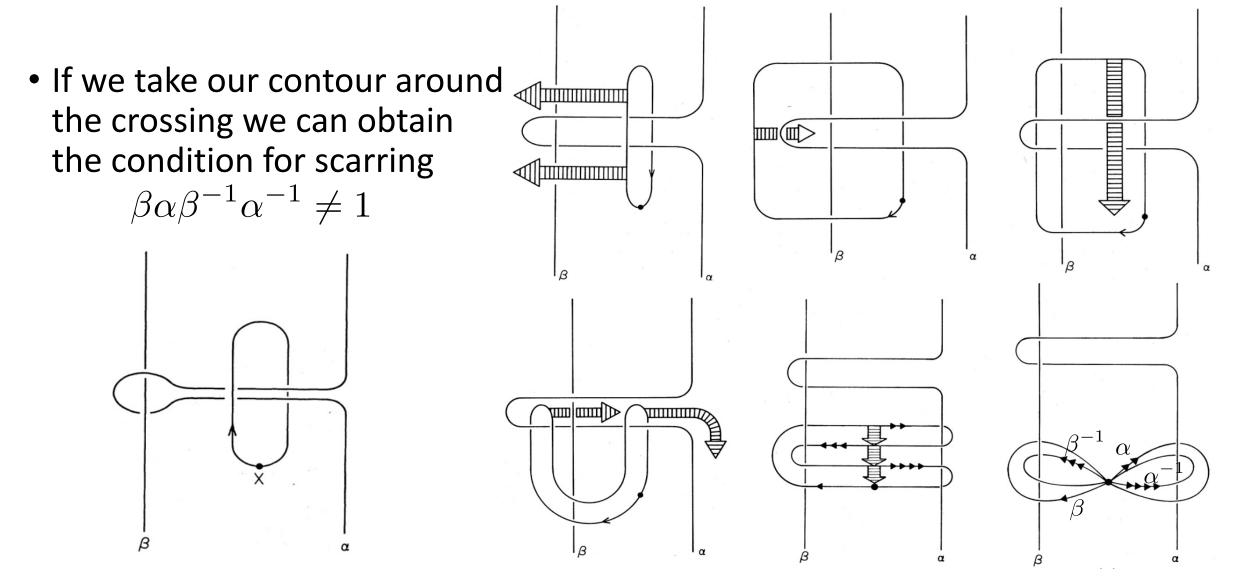
Scarring: the Unique Feature of NA Groups

- For Abelian groups the order line defects cross doesn't matter
- For non-Abelian groups "scarring" can occur
 - An effect where the crossing of line defects generates another line defect
- Scarring is only avoided when $\beta \alpha \beta^{-1} \alpha^{-1} = 1$
 - But this only holds for commuting elements $\alpha\,$ and $\,\beta\,$
- Let's look at this pictorially

To Scar or not to Scar, that is the Question



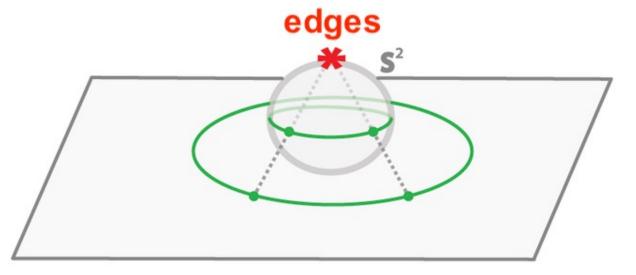
Pictorial Approach to Smooth Deformations



VII. The Second Homotopy Group

Spheres from Squares: 1 pt Compactification

- The one point compactification of the square is the sphere
- This will enable a useful notation where spheres with the same base point are connected at the edges



• "Closing the purse"

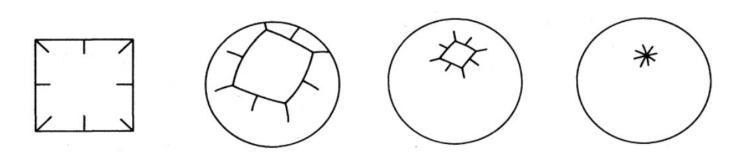
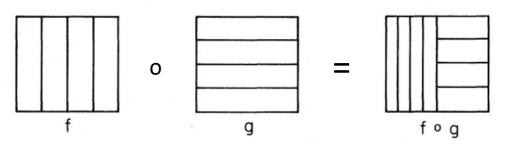
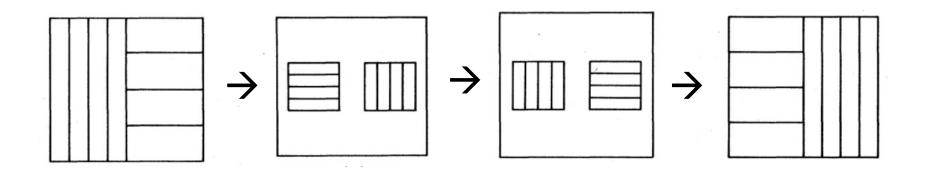


Image Credit: Adapted from Antoniou and Lambroupoulou Theorem: π_2 is Abelian

• Composition of functions

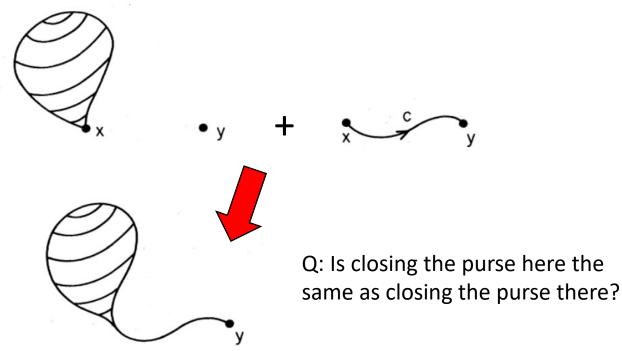


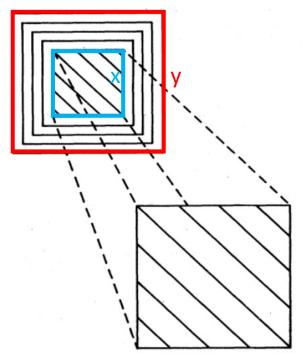
• Proof:



Theorem: π_2 is Base Point Independent

- Provided the spheres include the same volume
- Shifting to other base points requires that the enclosed region be **2-simple**, i.e. c induces a trivial automorphism on π_2



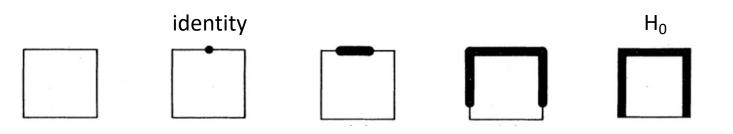


Fundamental Theorem of π_2

- Let G be simply connected (always possible—make it big enough)
- Let $\pi_2(G)=0$ (ok by Cartan's theorem for compact Lie groups)
- Let H be the isotropy subgroup (H = {g in G such that $g \Psi = \Psi$ })
- The coset space is G/H
- Let H₀ be the connected component connected to the identity
- Then π₂(G/H) = π₁(H₀)
- Proof: using the assumptions above establish an isomorphism between the two—one to one, and same algebraic structure

Pictorial Interpretation of the Fundamental Thm.

• Structure of H_0 on the edge of π_2 of the region



- Windings about H_0 gives us the possible "mouths" of the "purses"
- Here the $\pi_2(G)$ is assumed to be trivial so the only non-trivial behavior comes from H_0 and its winding about the "purse"

Exact Sequences

- This is an example of an exact sequence
- Since $\pi_2(G) = 0$ we can map to the kernel of H (H₀)
- This simplifies the computation of higher homotopy groups
- Exact sequences lead to the Bott periodicity theorem

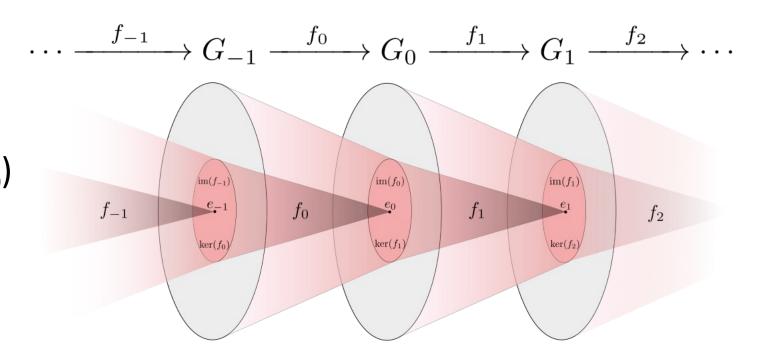
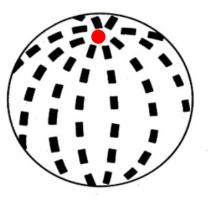


Image credit: Wikipedia

Corollary

- If H is discrete, then H_0 is a simple point
- Hence $\pi_1(H_0) = 0$
- So that $\pi_2(G/H) = \pi_1(H_0) = 0$
- Consequence
 - H is discrete for biaxial nematics and superfluid ³He
 - These systems do not exhibit point defects in 3D

NO BIAXIAL HEDGEHOGS!



Ex. Spins and Nematics

- Spins
 - G = SU(2)
 - H = {rotations about one axis}
 - $H_0 = U(1)$
 - $\pi_2(G/H) = \pi_1(H_0) = \pi_1(U(1)) = \{\text{winding numbers}\} = Z$
- Nematics
 - The same but an additional symmetry
 - +n and -n winding numbers correspond to the same field configuration
 - $\pi_2(G/H) = Z^+$

Comparison of π_1 and π_2

System	π ₁ (First Homotopy Group)	π ₂ (Second Homotopy Group)
Planar spins	Z	Not sensible
Spins in 3D	0	Z
Nematics	Z/2Z	Z+
Biaxial nematics	Quaternions	0
Superfluid ³ He	Z/2Z	0

Bonus. Applications to Q. Condensed Matter

Ex. Chern Numbers

- Consider a N x N Hamiltonian h (Hermitian matrix)
- We can decompose as $h = U D U^{-1}$
- Computation
 - G = U(N)
 - H = DU(N)
 - H0 = SDU(N)
 - $\pi_2(G/H) = \pi_1(H_0) = \pi_1(SDU(N)) = Z^N/Z = Z^{N-1}$
- Interpretation: N bands with integer "Chern" numbers c_n and $\Sigma c_n = 0$
- (for more details and related discussion see Moore, page 9)

Bott Periodicity Theorem

- From structure of exact sequences
- Unitary Groups
 - For $N \ge (n+1)/2$

$$\pi_n(U(N)) \cong \pi_n(SU(N)) \cong \begin{cases} 1 & n \text{ even} \\ Z & n \text{ odd} \end{cases}$$

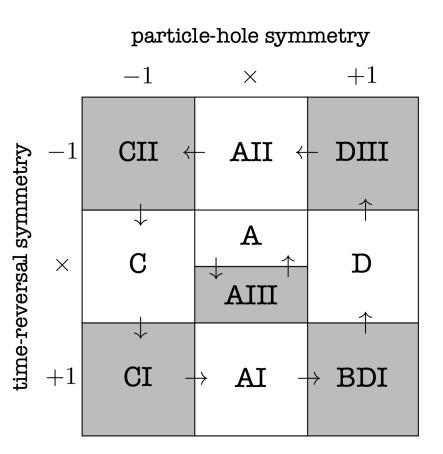
- Orthogonal Groups
 - For $N \ge n+2$

$$\pi_n(O(N)) \cong \pi_n(SO(N)) \cong \begin{cases} 1 & n \equiv 2, 4, 5, 6 \mod 8\\ Z/2Z & n \equiv 0, 1 \mod 8\\ Z & n \equiv 3, 7 \mod 8 \end{cases}$$

Periodic Table of Topological Insulators (& SC)

 This Bott periodicity appears shows up in the classification of (quadratic) mean field topological insulators/superconductors

δ											
Class	Т	С	S	0	1	2	3	4	5	6	7
A	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AI	+	0	0	\mathbb{Z}	0	0	0	2ℤ	0	\mathbb{Z}_2	\mathbb{Z}_2
BDI	+	+	1	\mathbb{Z}_2	\mathbb{Z}	0	0	0	2ℤ	0	\mathbb{Z}_2
D	0	+	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0
DIII	_	+	1	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	2ℤ
AII	_	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	0
CII	_	_	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0
С	0	_	0	0	0	2ℤ	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0
CI	+	_	1	0	0	0	2ℤ	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}



Some Homotopy Groups

		π_1	π_2	π_3	π_4	π_5	π_6
SO(3) SO(4)		\mathbb{Z}_2 \mathbb{Z}_2	0 0	\mathbb{Z} $\mathbb{Z} + \mathbb{Z}$	\mathbb{Z}_2 $\mathbb{Z}_2 + \mathbb{Z}_2$	\mathbb{Z}_2 $\mathbb{Z}_2 + \mathbb{Z}_2$	\mathbb{Z}_{12} $\mathbb{Z}_{12} + \mathbb{Z}_{12}$
SO(5)		\mathbb{Z}_2	0 0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2 \mathbb{Z}	0
SO(6) SO(n)	<i>n</i> > 6	\mathbb{Z}_2 \mathbb{Z}_2	0	\mathbb{Z}	0	0	0
U(1) SU(2)		\mathbb{Z} 0	0 0	0 Z	$\begin{array}{c} 0 \\ \mathbb{Z}_2 \end{array}$	$\begin{array}{c} 0 \\ \mathbb{Z}_2 \end{array}$	$\begin{array}{c} 0 \\ \mathbb{Z}_{12} \end{array}$
SU(3)		0 0	0 0	\mathbb{Z}	0 0	Z Z	\mathbb{Z}_{6}^{-}
SU(n) S^2	<i>n</i> > 3	0	Z	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}
S ³ S ⁴		0 0	0 0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2 \mathbb{Z}_2	\mathbb{Z}_{12} \mathbb{Z}_2
G_2		0	0	Z	0	0	\mathbb{Z}_3
F ₄ E ₆		0 0	0 0	\mathbb{Z}	0 0	0 0	0 0
E ₇ E ₈		0 0	0 0	\mathbb{Z}	0 0	0 0	0 0

Table 4.1. Useful homotopy groups.

From Nakahara (2003)

References

- N.D. Mermin, Topological theory of defects, RMP 51, 591 (1979)
- J.E. Moore, Notes for MIT minicourse on topological phases (2011)
- Nakahara, Geometry, Topology, and Physics, 2nd Edition (2003)
- Topology in Condensed Matter (2015)