Tanabe-Sugano Diagrams

Spenser Talkington

Assignment 1

Physics 662: Computational Many-Body Physics

26 January 2023

Functions for Exact Diagonalization

Creation and Annihilation Operators

I found this resource helpful for the Jordan-Wigner transformation: (https://learn.microsoft.com/en-us/azure/quantum/user-guide/libraries/chemistry/concepts/jordan-wigner)

Tanabe-Sugano Diagrams

Octahedral crystal field Hamiltonian

Indexing scheme:

$m\sigma=\{d_{xz}\uparrow,d_{yz}\uparrow,d_{xy}\uparrow,d_{x^2-y^2}\uparrow,d_{z^2}\uparrow,d_{xz}\downarrow,d_{yz}\downarrow,d_{xy}\downarrow,d_{x^2-y^2}\downarrow,d_{z^2}\downarrow\}$ $m\sigma=\{0\quad\ \ ,1\quad\ \ ,2\quad\ \ ,3\qquad\ \ ,4\quad\ \ ,5\quad\ \ ,6\quad\ \ ,7\quad\ \ ,8\qquad\ \ ,9\quad\ \ \}$

Coulomb interaction term

We express the Coulomb interation term in terms of Slater-Condon parameters. Indexing scheme:

$m=\{d_{xz},d_{yz},d_{xy},d_{x^2-y^2},d_{z^2}\}$

$m=\{0\ \ \ \, ,1\ \ \ ,2\ \ \ \, ,3\quad \ \ \ ,4\ \ \ \}$

Full Hamiltonian

Rotated into the fixed particle number subspace to save on the computational complexity.

Tanabe-Sugano Diagrams

For