Dissipation Induced Fermionic Flat Bands

Spenser Talkington and Martin Claassen
University of Pennsylvania
10 March 2022

Outline

- Context
- Dissipative System-Substrate Coupling
- Emergence of Flat Band Zero Modes from Dissipative Coupling
- Symmetry Protected "Dark Space" Mechanism for Flat Band Creation
- Experimentally Relevant Situation
- Open Questions

Dominant (Energy) Scales

- Physics works because we are (usually) able to separate scales
- Only address the scales relevant to the problem at hand
- In Condensed Matter we have many mechanisms across energy scales
- $\mu \mathrm{eV}$ ex. NMR, fine structure, microwave probes
- meV ex. superconducting gaps, moiré bandwidths, THz probes
- eV ex. semiconductor gaps, optics
- keV ex. X-ray spectroscopies
- Competing energy scales and competing phases
- ex. Coulomb vs kinetic term in small angle twisted bilayer graphene

Flat Bands: Dominant Coulomb Interaction

- Interesting stuff happens here!
- Superconductivity
- Charge orders
- Magnetic orders
- Fractionalized states
- And more!

Nature 597, 650 (2021)

Nature 556, 43 (2018)
$\mathrm{d} \mu / \mathrm{d} n\left(10^{-11} \mathrm{mV} \mathrm{cm}{ }^{2}\right) \quad 0.45 \square 2.80$

Ways to Realize Flat Bands

- Atomic-Like Insulators
- Nobel gas crystals, dimers, etc
- Kinetic Interference
- Kagomé and Lieb lattices
- Quantum Interference
- Diamond chain, Magic Angle TBLG
- What all these have in common
- Symmetry -> Rank-Nullity
- Here: substrate engineering

Phys. Rev. Research 3, 023210 (2021)

A Non-Inert Substrate

Band Flattening in QWZ Model

Approaches to Coupled Systems

- Partial trace over density matrices

$$
\begin{aligned}
& H_{\mathrm{tot}}=H_{\mathrm{sys}}+H_{\mathrm{sub}}+H_{\mathrm{int}} \\
& \rho_{\mathrm{sys}}=\operatorname{Tr}_{\mathrm{sub}}\left(\rho_{\mathrm{tot}}\right) \\
& \dot{\rho}=-i[H, \rho]
\end{aligned}
$$

- Integrating out in a path integral to arrive at an effective action

$$
\begin{aligned}
& S_{\mathrm{tot}}=S_{\mathrm{sys}}+S_{\mathrm{sub}}+S_{\mathrm{int}} \\
& S_{\mathrm{eff}}(\text { system d.o.f. })=S_{\mathrm{sys}}+\int_{\text {substrate d.o.f. }}\left(S_{\mathrm{sub}}+S_{\mathrm{int}}\right) \\
& Z=e^{i S}
\end{aligned}
$$

Density Matrix Formalism

$$
H_{\text {int }}=\sum S_{m} \otimes E_{m} \underbrace{}_{-\infty} d t e^{i \omega t} \operatorname{Tr}_{\text {sub }}\left(e^{-i H_{\text {sub }} t} E_{\alpha}^{\dagger} e^{i H_{\text {sub }} t} E_{\beta} \rho_{\operatorname{sub}}(0)\right)
$$

$$
\dot{\rho}=-i[H, \rho]
$$

Coupling strength (real \#) aren't in system, ex. k_{\perp}

The Lindbladian

- Introduce a superoperator \mathcal{L}

$$
i \dot{\rho}=\mathcal{L}[\rho]
$$

$$
J_{m}(\boldsymbol{k})=\sum_{\alpha} a_{m, \alpha}(\boldsymbol{k}) c_{\boldsymbol{k}, \alpha}+b_{m, \alpha}(\boldsymbol{k}) c_{-\boldsymbol{k}, \alpha}^{\dagger}
$$

- The diagonalization of M

$$
\left.\begin{array}{ll}
\mathcal{L}[\rho]=[H, \rho]-i \frac{\Gamma}{2} \sum_{m}\left(\left\{J_{m}^{\dagger} J_{m}^{\dagger}, \rho\right\}-2 J_{m} \rho J_{m}^{\dagger}\right) \\
\text { Non-Hermitian } \\
\text { jump operators }
\end{array}\right)
$$

- Normal modes of \mathcal{L}
- Particle-like
- Hole-like
- Generalized band structure

What Does Dissipation Mean?

- Mathematically: quantum jump operators
- Act on both left and right on density matrices
- Non-Hermitian!

- Intuitively: scrambling degrees of freedom
- Particles can tunnel between the system and a bath
- Particles in a band have a finite lifetime/"memory"
- Information that existed in the system is lost to local measurements as it is stored in non-local degrees of freedom

The Single Particle Lindbladian I

- We want the normal modes of \mathcal{L}
- Express in terms of "left" and "right" superfermions

$$
\ell_{\boldsymbol{k}, \alpha} \rho=c_{\boldsymbol{k}, \alpha} \rho \mathcal{P} \quad r_{\boldsymbol{k}, \alpha} \rho=\rho c_{\boldsymbol{k}, \alpha}^{\dagger} \mathcal{P}
$$

- Generalization of Prosen's "third quantization" New J. Phys. 10, 043026 (2008)
- With $\mathcal{L}=\boldsymbol{\Phi}^{\dagger}\left[L_{\mathrm{coh}}(\boldsymbol{k})-i L_{\mathrm{dis}}(\boldsymbol{k})\right] \boldsymbol{\Phi}$ for $\boldsymbol{\Phi}_{\boldsymbol{k}}=\left(\boldsymbol{\ell}_{\boldsymbol{k}}, \boldsymbol{r}_{\boldsymbol{k}}, \ell_{-\boldsymbol{k}}^{\dagger}, \boldsymbol{r}_{-\boldsymbol{k}}^{\dagger}\right)$

$$
L_{\mathrm{dis}}=\frac{\Gamma}{4}\left(\begin{array}{cccc}
A-B & -2 B & C-C^{\top} & 2 C^{\top} \\
-2 A & B-A & -2 C & C-C^{\top} \\
\left(C^{\top}-C\right)^{*} & -2 C^{*} & (B-A)^{\top} & 2 A^{\top} \\
2 C^{\dagger} & \left(C^{\top}-C\right)^{*} & 2 B^{\top} & (A-B)^{\top}
\end{array}\right)
$$

The Single Particle Lindbladian II

- Let

$$
\begin{aligned}
A_{\alpha, \beta} & =\sum_{m} a_{m, \alpha}^{*} a_{m, \beta} \\
B_{\alpha, \beta} & =\sum_{m} b_{m, \alpha} b_{m, \beta}^{*} \\
C_{\alpha, \beta} & =\sum_{m} a_{m, \alpha}^{*} b_{m, \beta}
\end{aligned}
$$

- And

$$
L_{\mathrm{coh}}=\frac{1}{2}\left(\begin{array}{cccc}
H & 0 & 0 & 0 \\
0 & H & 0 & 0 \\
0 & 0 & -H^{\top} & 0 \\
0 & 0 & 0 & -H^{\top}
\end{array}\right)
$$

These are just defined for notational
simplicity and have no deeper meaning

Symmetries of the Single Particle Lindbladian

- We can write in terms of pseudospins for particles/holes η and left/right contours τ to make the symmetries manifest
- L has BdG form, so we expect
- Charge conjugation symmetry

$$
\mathcal{C}^{-1} L^{\top} \mathcal{C}=-L \quad \mathcal{C}=\eta_{1} \otimes \tau_{0}
$$

- Time reversal symmetry (here "contour-reversal symmetry")

$$
\mathcal{T}^{-1}(i L)^{*} \mathcal{T}=i L \quad \mathcal{T}=\eta_{2} \otimes \tau_{2}
$$

- Chiral symmetry

$$
\mathcal{S}^{-1}(i L)^{\dagger} \mathcal{S}=-i L \quad \mathcal{S}=i \eta_{3} \otimes \tau_{2}
$$

The Dark Space I

- Now, impose one additional symmetry that commutes with L

$$
\mathcal{D}=\eta_{3} \otimes \tau_{1}
$$

- One then has that $A=B$ and $C=C^{\top}$
- The dissipative part of the Lindbladian must then be

$$
L_{\mathrm{dis}}=-\frac{\Gamma}{2}\left(\operatorname{Re}(A) \eta_{3} \otimes \tau_{1}+i \operatorname{Im}(A) \eta_{0} \otimes \tau_{1}+\operatorname{Im}(C) \eta_{1} \otimes \tau_{2}+\operatorname{Re}(C) \eta_{2} \otimes \tau_{2}\right)
$$

- Which is Hermitian!

The Dark Space II

- This pseudospin representation can then be rotated so that

$$
\begin{array}{r}
U L_{\text {dis }} U^{\dagger}=-\frac{\Gamma}{2} \tau_{1} \otimes\left(\begin{array}{cc}
\boldsymbol{a}^{\dagger} \boldsymbol{a} & \boldsymbol{a}^{\dagger} \boldsymbol{b} \\
\boldsymbol{b}^{\dagger} \boldsymbol{a} & \boldsymbol{b}^{\dagger} \boldsymbol{b}
\end{array}\right) \longleftarrow[a]_{m, \alpha}=a_{m, \alpha},[b]_{m, \alpha}=b_{m, \alpha} \\
\begin{array}{c}
\text { Nzero eigenvalues with eigenvectors } \\
\left|\phi_{i}^{ \pm}\right\rangle=U^{\dagger}\left(u_{i}, v_{i}, \pm u_{i}, \pm v_{i}\right)
\end{array} \\
\left.{ }^{\dagger}\right\rangle \text { span a dissipationless "dark space" } \quad \begin{array}{l}
a u_{i}+b v_{i}=0
\end{array}
\end{array}
$$

- Generically the other modes are short lived, but there are more longlived modes if there are fewer jump operators than orbitals
- These "rank deficient" modes are a manifestation of the Rank-Nullity Theorem

Order 1: Projecting Into the Dark Space

- Now if we consider the strong dissipation limit $\Gamma \gg t$ we can treat the coherent part of the evolution as a perturbation to the dissipative part
- To lowest order, just project into the dark space

$$
\widetilde{L}_{i j}=\left\langle\phi_{i}\right| L_{\mathrm{coh}}\left|\phi_{j}\right\rangle
$$

- One gets N (generically dispersive) bands with infinite lifetime
- Charge-conjugation symmetry: modes are paired $\epsilon(\boldsymbol{k}) \leftrightarrow-\epsilon(\boldsymbol{k})$
- So $\operatorname{Tr}(\widetilde{L})=0$: if N is odd then there must be a "dangling" zero mode $\epsilon=0$
- So: odd number of bands and $[L, \mathcal{D}]=0$, and Γ strong enough \Longrightarrow long-lived flat band

Order 2: Finite Lifetime Corrections

- Second order corrections lead to finite lifetime
- But processes that couple the dark to the light spaces have lifetimes $\sim 1 / \Gamma$, so the flat band is counterintuitively long lived in the large Γ limit
- Can rotate the Lindbladian to be block diagonal

Example: A 3-Band Model (MoS $\left.{ }_{2}\right)$

- An odd number of bands
- Any jump operators with dark-space symmetry will lead to the formation of a flat band
- But this model isn't a very good idea!
- Band flattening on this energy scale isn't experimentally plausible for coupling to superconductor
- Energy scales are way too big
- $500 \mathrm{meV}=6000 \mathrm{~K}$

MoS2 3-band model band structure

Phys. Rev. B 88, 085433 (2013) via PyBinding package

Aside: What Does it Mean to Have an Odd \#?

- Real systems often have a few bands near the Fermi energy and a spaghetti of bands at large positive and negative energies
- How can we assign a system a number of bands?
- Only count the bands in an energy window
- (1) The window for which Γ is large to the bandwidths and energies
- (2) The window for which the jump operators fulfill dark space symmetry

Example: Qi-Wu-Zhang Model

- Jump operator: couple to just one band

$$
J=c_{\boldsymbol{k}, m}+c_{\boldsymbol{k}, m}^{\dagger}
$$

- Rank nullity means that we get a flat band
- Critical dissipation rate corresponds to the maximum bandwidth
- Topology: Chern number zero

Asboth, Short Course on Topological Insulators, Springer (2016)

(c) Lifetime and Bandwidth as Dependent on Γ

Spinful Mechanism

- Same dark space operator (but with spin now too)

$$
\mathcal{D}=\eta_{3} \otimes \tau_{1} \otimes \sigma_{0}
$$

- We need two jump operators to remain TRS invariant

$$
\begin{aligned}
& J_{\uparrow}=c_{\boldsymbol{k}, \uparrow}+c_{-\boldsymbol{k}, \downarrow}^{\dagger} \\
& J_{\downarrow}=c_{\boldsymbol{k}, \downarrow}+c_{-\boldsymbol{k}, \uparrow}^{\dagger}
\end{aligned}
$$

- Dark space argument is then the same
- Project into dissipationless subspace and get a dangling mode
- (or) Rank deficient

Example: NN Spinful TRS One Band Model

- Let $H(\boldsymbol{k})=d(\boldsymbol{k}) \sigma_{0}+\lambda(\boldsymbol{k}) \sigma_{3}$ with $d(\boldsymbol{k})$ even, $\lambda(\boldsymbol{k})$ odd
- Choose both jump operators of the form $J_{\sigma}=c_{\boldsymbol{k}, \sigma}+c_{-\boldsymbol{k},-\sigma}^{\dagger}$
- Both leads to TRS
- Nearest neighbor hopping
- Triangular Lattice

Magic-Angle Twisted Bilayer Graphene

- Isolated Flat Band
- Can we make it flatter?
- Be less close to magic angle and still get interesting phases?

Twisted TMD Homobilayers

- Isolated almost flat band
- Likely some other TMD homo or hetero bilayers will have similar structures

Mean-Field s-Wave Superconductor

- Generic form of jump operators

$$
J_{m}(\boldsymbol{k})=\sum_{\alpha} a_{m, \alpha}(\boldsymbol{k}) c_{\boldsymbol{k}, \alpha}+b_{m, \alpha}(\boldsymbol{k}) c_{-\boldsymbol{k}, \alpha}^{\dagger}
$$

- The BdG quasiparticles look very similar

$$
\binom{\alpha_{\boldsymbol{k} \uparrow}}{\alpha_{-\boldsymbol{k} \downarrow}^{\dagger}}=\left(\begin{array}{cc}
\cos \left(\theta_{\boldsymbol{k}}\right) & \sin \left(\theta_{\boldsymbol{k}}\right) \\
\sin \left(\theta_{\boldsymbol{k}}\right) & -\cos \left(\theta_{\boldsymbol{k}}\right)
\end{array}\right)\binom{c_{\boldsymbol{k} \uparrow}}{c_{-\boldsymbol{k} \downarrow}^{\dagger}}
$$

- What happens to the symmetries of the Lindbladian if we are tunneling of Cooper pairs?

Jump Operators of the s-Wave Superconductor

- Integrating and diagonalizing,

$$
\begin{aligned}
& -\frac{\left(\omega+\sqrt{\omega^{2}+\Delta^{2}}\right)}{\Delta} c_{\boldsymbol{k}, \sigma}^{\dagger}+1 c_{-\boldsymbol{k},-\sigma} \\
& -\frac{\left(\omega+\sqrt{\omega^{2}+\Delta^{2}}\right)}{\Delta} c_{\boldsymbol{k}, \sigma}+1 c_{-\boldsymbol{k},-\sigma}^{\dagger}
\end{aligned}
$$

- Which for $\omega \ll \Delta$ are of the form we studied above
- Band flattening occurs in this window while other states just become finite lived

Experimental Proposal

- Twisted TMD bilayer
- TBLG (near magic angle)
- WSe_{2} (~<4 deg)
- PtSe_{2} (~6 deg)
- On top of a s-wave superconductor
- Or a high-T T_{c} superconductor
- T dependence of near-IR optics
- Sharper absorption edge
- Narrower Drude peak
- Although there are issues with probing the superconductor vs probing the surface

- Could also do ARPES, pump-probe, or possibly even interferometry

Summary

- Flat bands exhibit a panoply of fascinating strongly interacting phases
- Substrates need not be inert and can help to engineer flat bands
- We showed that this engineering can rely on the symmetries of the coupling between the system and the substrate
- When a "dark space" symmetry holds, flat bands form above a critical dissipation rate
- This does not rely on the crystalline properties of the system
- Dissipation: an rich new subfield with lots of "low hanging fruit"
- Existing work: (1) driving systems to states; (2) almost flat Chern bands (M. Goldstein) ; (3) classifying Lindbladians (S. Lieu)

Thank you!

