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Outline

• Context
• Dissipative System-Substrate Coupling
• Emergence of Flat Band Zero Modes from Dissipative Coupling
• Symmetry Protected “Dark Space” Mechanism for Flat Band Creation
• Experimentally Relevant Situation
• Open Questions
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Dominant (Energy) Scales

• Physics works because we are (usually) able to separate scales
• Only address the scales relevant to the problem at hand

• In Condensed Matter we have many mechanisms across energy scales
• µeV ex. NMR, fine structure, microwave probes
• meV ex. superconducting gaps, moiré bandwidths, THz probes
• eV ex. semiconductor gaps, optics
• keV ex. X-ray spectroscopies

• Competing energy scales and competing phases
• ex. Coulomb vs kinetic term in small angle twisted bilayer graphene
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Flat Bands: Dominant Coulomb Interaction

• Interesting stuff happens here!
• Superconductivity
• Charge orders
• Magnetic orders
• Fractionalized states
• And more! Nature 597, 650 (2021)

Nature 600, 439 (2021)

Nature 556, 43 (2018)
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Ways to Realize Flat Bands

• Atomic-Like Insulators
• Nobel gas crystals, dimers, etc

• Kinetic Interference
• Kagomé and Lieb lattices

• Quantum Interference
• Diamond chain, Magic Angle TBLG

• What all these have in common
• Symmetry -> Rank-Nullity

• Here: substrate engineering

Nat. Phys. 13, 672 (2017)Wikipedia

Phys. Rev. Research 3, 023210 (2021)
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A Non-Inert Substrate

Substrate

N Band System
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Band Flattening in QWZ Model

Re(E)



Approaches to Coupled Systems

• Partial trace over density matrices

• Integrating out in a path integral to arrive at an effective action

ρsys = Trsub(ρtot)

ρ̇ = −i[H, ρ]

Htot = Hsys +Hsub +Hint

Stot = Ssys + Ssub + Sint

Seff(system d.o.f.) = Ssys +

∫
substrate d.o.f.

(Ssub + Sint)

Z = e
iS
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Density Matrix Formalism

Hint =

∑

m

Sm ⊗ Em

ρ̇ = −i[H, ρ]

Many Assumptions

(particular to density matrix)

iρ̇sys = [Hsys +Hlamb, ρsys]− i
Γ

2

∑

ω,k‖,α,β

Mαβ

(

{S†
αSβ , ρsys}− 2SβρsysS

†
α

)

Coherent shift from
coupling to substrate

Coupling strength (real #)

Encodes Hsub and Hint
System operators act
on left and right

Mαβ =

∫ ∞

−∞

dt eiωtTrsub
(

e−iHsubtE†
αe

iHsubtEβρsub(0)
)

Thermal density matrixOver DOFs in substrate that
aren’t in system, ex. k⊥

Environment operators
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The Lindbladian

• Introduce a superoperator

• The diagonalization of M

• Normal modes of    
• Particle-like
• Hole-like
• Generalized band structure

iρ̇ = L[ρ]

L

L[ρ] = [H, ρ]− i
Γ

2

∑

m

(

{J†
m
Jm, ρ}− 2JmρJ†

m

)

Non-Hermitian
jump operators

L

Jm(k) =
∑

α

am,α(k)ck,α + bm,α(k)c
†
−k,α
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What Does Dissipation Mean?

• Mathematically: quantum jump operators
• Act on both left and right on density matrices
• Non-Hermitian!

• Evolution is not unitary
• Particle number is not conserved

• Intuitively: scrambling degrees of freedom
• Particles can tunnel between the system and a bath
• Particles in a band have a finite lifetime/“memory”
• Information that existed in the system is lost to local measurements as it is 

stored in non-local degrees of freedom
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The Single Particle Lindbladian I

• We want the normal modes of 
• Express in terms of “left” and “right” superfermions

• Generalization of Prosen’s “third quantization” New J. Phys. 10, 043026 (2008)

• With for 

L

!k,αρ = ck,αρP rk,αρ = ρc
†
k,α

P
Fermion parity operator (-1)N

L = Φ
†[Lcoh(k)− iLdis(k)]Φ Φk = (!k, rk, !

†
−k

, r
†
−k

)

Ldis =
Γ
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A−B −2B C − C! 2C!

−2A B −A −2C C − C!

(C!
− C)∗ −2C∗ (B −A)! 2A!

2C† (C!
− C)∗ 2B! (A−B)!









BdG form
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The Single Particle Lindbladian II

• Let
Aα,β =

∑

m

a∗m,αam,β ,

Bα,β =

∑

m

bm,αb
∗

m,β ,

Cα,β =

∑

m

a∗m,αbm,β

• And

Lcoh =
1

2









H 0 0 0

0 H 0 0

0 0 −H! 0

0 0 0 −H!









Also BdG form

These are just defined for notational
simplicity and have no deeper meaning
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Symmetries of the Single Particle Lindbladian

• We can write in terms of pseudospins for particles/holes     and 
left/right contours     to make the symmetries manifest
• L has BdG form, so we expect
• Charge conjugation symmetry

• Time reversal symmetry (here “contour-reversal symmetry”)

• Chiral symmetry

C
−1

L
"
C = −L C = η1 ⊗ τ0

η

τ

T −1(iL)∗T = iL T = η2 ⊗ τ2

S
−1(iL)†S = −iL S = iη3 ⊗ τ2

(anti)-commutation relations need to be generalized
for non-Hermitian L, see Phys. Rev. X 8, 031079 (2018)
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The Dark Space I

• Now, impose one additional symmetry that commutes with L

• One then has that A=B and C=CT

• The dissipative part of the Lindbladian must then be

• Which is Hermitian!

D = η3 ⊗ τ1

Ldis = −
Γ

2

(

Re (A) η3 ⊗ τ1 + i Im (A) η0 ⊗ τ1 + Im (C) η1 ⊗ τ2 +Re (C) η2 ⊗ τ2

)
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The Dark Space II

• This pseudospin representation can then be rotated so that

• span a dissipationless “dark space”
• Generically the other modes are short lived, but there are more long-

lived modes if there are fewer jump operators than orbitals
• These “rank deficient” modes are a manifestation of the Rank-Nullity Theorem

ULdisU
†
= −

Γ

2
τ1 ⊗

(

a†a a†b

b†a b†b

)

|φ±
i
〉 = U† (ui, vi, ±ui, ±vi)

Eigenvalues ±1 N zero eigenvalues with eigenvectors

aui + bvi = 0

[a]m,α = am,α, [b]m,α = bm,α

|φ±〉
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Order 1: Projecting Into the Dark Space

• Now if we consider the strong dissipation limit              we can treat the 
coherent part of the evolution as a perturbation to the dissipative part
• To lowest order, just project into the dark space

• One gets N (generically dispersive) bands with infinite lifetime
• Charge-conjugation symmetry: modes are paired
• So : if N is odd then there must be a “dangling” zero mode 

• So: odd number of bands and , and     strong enough        
long-lived flat band

L̃ij = 〈φi|Lcoh|φj〉

ε(k) ↔ −ε(k)
Tr(L̃) = 0 ε = 0

[L,D] = 0
=⇒

Γ >> t

Γ
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Order 2: Finite Lifetime Corrections

• Second order corrections lead to finite lifetime
• But processes that couple the dark to the light 

spaces have lifetimes ~        , so the flat band is 
counterintuitively long lived in the large     limit
• Can rotate the Lindbladian to be block diagonal

Light
Space

Dark
Space

1/Γ

1/Γ

1/Γ
Γ
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Example: A 3-Band Model (MoS2)

• An odd number of bands
• Any jump operators with dark-space symmetry 

will lead to the formation of a flat band

• But this model isn’t a very good idea!
• Band flattening on this energy scale isn’t 

experimentally plausible for coupling t o 
superconductor
• Energy scales are way too big

• 500 meV = 6000 K
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Aside: What Does it Mean to Have an Odd #?

• Real systems often have a few bands near the Fermi energy and a 
spaghetti of bands at large positive and negative energies
• How can we assign a system a number of bands?

• Only count the bands in an energy window
• (1) The window for which     is large to the bandwidths and energies
• (2) The window for which the jump operators fulfill dark space symmetry

Γ

E

19k



Example: Qi-Wu-Zhang Model
• Jump operator: couple to just one band

• Rank nullity means that we get a flat band
• Critical dissipation rate corresponds to the 

maximum bandwidth
• Topology: Chern number zero

J = ck,m + c
†
k,m

Γ=0
Γ=Γc/3
Γ=2Γc/3
Γ=Γc
Γ=1.1Γc

-3t/2

-t

-t/2

0

t/2

t

3t/2
Γ X M Γ
(a) Real Band Structure

0 Γc/3 2Γc/3 Γc 4Γc/3 5Γc/3 2Γc
0

1

2

3

4
(c) Lifetime and Bandwidth as Dependent on Γ

20Asboth, Short Course on Topological Insulators, Springer (2016)



Spinful Mechanism

• Same dark space operator (but with spin now too)

• We need two jump operators to remain TRS invariant

• Dark space argument is then the same
• Project into dissipationless subspace and get a dangling mode
• (or) Rank deficient

21

D = η3 ⊗ τ1 ⊗ σ0

J↑ = ck,↑ + c
†
−k,↓

J↓ = ck,↓ + c
†
−k,↑



Example: NN Spinful TRS One Band Model

• Let with          even,           odd
• Choose both jump operators of the form
• Both leads to TRS

• Nearest neighbor hopping
• Triangular Lattice

H(k) = d(k)σ0 + λ(k)σ3 λ(k)d(k)

Jσ = ck,σ + c
†
−k,−σ

Γ=0
Γ=Γc/3
Γ=2Γc/3
Γ=Γc

Γ K M Γ
-3t/2

-t

-t/2

0

t/2

t

3t/2

22

Re(E)



Magic-Angle Twisted Bilayer Graphene

• Isolated Flat Band
• Can we make it flatter?
• Be less close to magic 

angle and still get 
interesting phases?

23PNAS 108, 30 (2011)



Twisted TMD Homobilayers

• Isolated almost flat band
• Likely some other TMD homo or hetero bilayers will have similar structures

Electron. Struct. 4 014004 (2022)

WSe2 @ 3.89 degrees PtSe2 @ 6.0 degrees

Nat. Mater. 19 861 (2020) 24



Mean-Field s-Wave Superconductor

• Generic form of jump operators

• The BdG quasiparticles look very similar

• What happens to the symmetries of the Lindbladian if we are 
tunneling of Cooper pairs?

(

αk↑

α
†
−k↓

)

=

(

cos(θk) sin(θk)
sin(θk) − cos(θk)

)(

ck↑

c
†
−k↓

)

Jm(k) =
∑

α

am,α(k)ck,α + bm,α(k)c
†
−k,α
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Jump Operators of the s-Wave Superconductor

• Integrating and diagonalizing,

• Which for are of the form we studied above
• Band flattening occurs in this window while other states just become finite lived

−

(ω +
√

ω
2 +∆2)

∆
c
†
k,σ

+ 1 c−k,−σ

−

(ω +
√

ω
2 +∆2)

∆
ck,σ + 1 c

†
−k,−σ

ω << ∆

Mαβ =

∫ ∞

−∞

dt eiωtTrsub
(

e−iHsubtE†
αe

iHsubtEβρsub(0)
)
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Experimental Proposal
• Twisted TMD bilayer

• TBLG (near magic angle)
• WSe2 (~<4 deg)
• PtSe2 (~6 deg)

• On top of a s-wave superconductor
• Or a high-Tc superconductor

• T dependence of near-IR optics
• Sharper absorption edge
• Narrower Drude peak
• Although there are issues with probing 

the superconductor vs probing the surface
• Could also do ARPES, pump-probe, or 

possibly even interferometry

E
T>Tc

DOS

T<Tc

DOS

E
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Summary

• Flat bands exhibit a panoply of fascinating strongly interacting phases
• Substrates need not be inert and can help to engineer flat bands
• We showed that this engineering can rely on the symmetries of the 

coupling between the system and the substrate
• When a “dark space” symmetry holds, flat bands form above a critical 

dissipation rate
• This does not rely on the crystalline properties of the system

• Dissipation: an rich new subfield with lots of “low hanging fruit”
• Existing work: (1) driving systems to states; (2) almost flat Chern bands (M. 

Goldstein) ; (3) classifying Lindbladians (S. Lieu)
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Thank you!
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