Continuum Field Theories for Fractons

Spenser Talkington 29 April 2022

Outline

(1) clutuition for fractons (2) Continuum field theories 3 Fractons usually don't fit into this picture (3) Background: Magnetic monopoles (4) (9(1) Tensor gauge theory Is The model and its analysis b Fractons as defects in the theory (5) Conclusion 5 Other continuum models for fractons 5 Outlook

Ex. Lattice Defects

· Point defects in lattices

What Are Fractons?

- "Subdimensional particles"
 G Motion is restricted to a subspace
 G This restriction often originates with a conservation law
- · Example: 1D lattice with conserved charge & dipole

5 1 Charge _______ Localized 5 Multiple charges ______

Multipole Conservation		
Object	Maxwell	Tensor Maxwell
Vector Potential	Ai	Aij
Canonical [,]	[A _i (x), Ejly)]= żδ _{ij} δ(x-y)	$\begin{bmatrix} A_{ij}(x), E_{kl}(y) \end{bmatrix} = i(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) \delta(x-y)/2$
Gauss' Law	$\partial_i E_i = \rho$	$\partial_i \partial_i E_{ij} = \rho$
Charge	$Q = \int d^3 x \partial_i E_i$ = $\oint dn_i E_i$	$Q = \int d^3 x \ \partial_i \partial_j E_{ij}$ $= \oint dn_j \ \partial_j E_{ij}$
Dipole	Not conserved	$P_{i} = \int d^{3}x x_{i} \rho \qquad P_{i} \text{ Conserval!} \\ = \oint dn_{k} (x_{i} \partial_{j} E_{jk} - E_{ik}) \\ 1 \text{ Stokes Thm.}$

Why Continuum 3T?

- Enables us to transfer what we know for lattices
 to continuum models we may want to modify
- · Low energy effective field theories are universal L' finite number of relevant operators Smooth Variation 4 Taylor expansion litesimal) $A(x+a) = \sum_{n=0}^{\infty} \frac{A^{(n)}(x)}{n!} a^n$ G Irrelevant operators are typically suppressed by powers of the lattice constant a 6 No UV-IR mixing

Breakdown of Continuum J.T.

- · Let A(x) be discontinuous
 - L' typical scenario for lattice field theories
 - J fractons are localized which motivates making A(x) discontinuous
- A⁽ⁿ⁾(x) can now be arbitrarily large dx Θ(x)=δ(x)
 Gigher order terms are not irrelevant for continuum J.T.
 UV and IR mix
- Key question: Can we construct a continuum field theory that exhibits fractons?

Ex. Dirac Magnetic) monopoles
emerge from the obstruction
to a single smooth gauge
• Can have two gauges with

$$A_N = A_S + \nabla \omega$$

where $\omega(\theta, \psi)$ has an ambiguity
from the periodicity of $\theta \in [0, 2\pi)$
• Example:
 $A_N = \frac{e}{4\pi R} \frac{1-\cos \psi}{\sin \psi}$ and $A_S = -\frac{e}{4\pi R} \frac{1+\cos \psi}{\sin \psi}$
with $\omega = \frac{e}{2\pi} \theta$ or $\omega = \frac{e}{2\pi} \theta \Theta(\overline{y}_2 - \psi)$

Ex. Dirac Monopoles

- · This "obstruction" to a smooth choice of gauge field is the origin of the Dirac monopole
- · The intersection of "open covers' is S' and $\pi_1(S') = \mathbb{Z}$ So we can construct a "non-trivial U(1) fiber bundle"
- Ex. Partition S^2 into U_{N} , $U_S S.t$ $U_N U U_S = S^2$. Now let $T_{NS}: U_N \cap U_S \rightarrow U(1)$ be the "transition function" e.g. $T(\theta) = e^{in\theta}$ with neZ where n sets the charge

9(1) Tensor Gauge Theory
• Gauge Sield
$$(A_t, A_{pos})$$
 in 2+10 $A_{pos} := A_{xy} = A_{yx}$
 $(A_{xx} = A_{yy} = 0)$
 $b A_t \mapsto A_t + \partial_t \alpha$ and $A_{pos} \mapsto A_{pos} + \partial_x \partial_y \alpha$
• Gauge invariant electric field two derivatives!
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
• Lagrangian $A_{yax} = 0$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 $b E = \partial_t A_{pos} - \partial_x \partial_y A_t$
 b

Piecewise Discontinuities

• Let A be smooth and single valued on each patch and only have piecewise discontinuities given by non-trivial transition functions Tij so that $A_j = A_i + \partial_x \partial_y T_{ij}$ there is no A that is good everywhere.

Transition Junctions

- Let $\underbrace{2U_i}$ be an "open cover" of the base space, then the transition functions T_{ij} : $U_j \cap U_j \longrightarrow U(1)$ Can be used to construct a fiber bundle.
- Generically, the "connection" in patch U; is related to U; by $A_j = T_{ij}^{-1} A_j T_{ij} + T_{ij}^{-1} dT_{ij}$

· Here, we consider

$$A_j = A_i + \partial_x \partial_y T_{ij}$$

and let A_t and A_{pos} be single valued on each Patch with transition functions of the form $T(x,y) = 2\pi \left(\frac{x}{N_x} \Theta(y-y_0) + \frac{y}{N_y} \Theta(x-x_0) - \frac{xy}{N_xN_y}\right)$

Fluxes

• We consider the transition Sunction (gauge transformation) $T(x,y) = 2\pi \left(\frac{x}{N_{x}} \Theta(y-y_{0}) + \frac{y}{N_{y}} \Theta(x-x_{0}) - \frac{xy}{N_{x}N_{y}}\right)$ · So we have with Apos = 0 that Apos = Apos + Dray T $\widetilde{A}_{pos}(x,y) = 2\pi \frac{t}{a_t} \left(\frac{1}{N_x} \delta(y-y_0) + \frac{1}{N_y} \delta(x-x_0) - \frac{1}{N_x N_u} \right)$ • From which we see Recall: $E = \partial_t A_{POS} - \partial_x \partial_y A_t$ $q_x(x) = \oint dt \oint dy E = 2\pi \delta(x - x_0)$ $g_y(y) = \int dt \int dx E = z\pi \delta(y-y_0)$ which give rise to the quantized fluxes (in ZTZ) $g_{x}(x_{1}, x_{2}) = \int_{x_{1}}^{x_{2}} dx g_{x}(x)$ and $g_{y}(y_{1}, y_{2}) = \int_{y_{1}}^{y_{2}} dy g_{y}(y)$

't Hooft Loop Operator • Recall the conserved current is $J=2E/g^2+\theta/2\pi$ Where $\partial_t J = 0$ and $\partial_x \partial_y J = 0$ The usual <u>Lines</u> are charged and hence gauge variant • The gauge invariant objects are 🖌 the 't Hoost - Wilson <u>strip</u> operators Cannot cross a $W_{\chi}(\chi_{1},\chi_{2}) = e^{i\int_{\chi_{1}}^{\chi_{2}}d\chi} \oint dy A_{pos}$ discontinuity or W would not be Wy(y, yz) = e i Syidy &dx Apos gauge invariant To be gauge invariant the loop operators must be 14 in variant under Apos +> Apos 5 this is only possible if (x,xz) contains no lines of discontinuity x, x,

Fractons as Defects

Cannot cross a

Х,

discontinuity or

W would not be

gauge invariant

ſy

- Monopole motion is restricted to OD. Dipole motion is in 1D.
- The 't Hoost-Wilson strip operators are the gauge-invariant operators that generate the various ground states of the theory
 ISL'>= WISD
- Physically, W is generating a dipole-anti-dipole pair, winding one around the torus and annihilating
- The ground-state degeneracy goes is $N_x + N_y 1$ which is not a constant or a volume law!

Summary: (9(1) Model

- · Gauge invariance can restrict the mobility of excitations
- The U(I) tensor model realizes key features of fractions:
 b fractional mobility
 b exotic global (dipole) symmetry
 b unusual (~V^{1/D}) scaling of ground state degeneracy
 - The restrictions originate from discontinuities in the gauge field described by "transition functions" that construct a non-trivial fiber bundle in analogy to the non-trivial bundle of the Dirac monopole

Other Models

- Many lattice and a few continuum models
- · Common features
 - · Localization
 - Unusual (tensor) global symmetries
 Unusual ground-state degeneracy
- X Cube model: the paradigmatic Lattice model
- ø model in 1+10 $\mathcal{J} = \frac{\mu_{t}}{2} \left(\partial_{t} \phi\right)^{2} - \frac{1}{2\mu} \left(\partial_{x} \partial_{y} \phi\right)^{2} \Longrightarrow \mathcal{W}^{2} = P_{x}^{2} P_{y}^{2}$ · ZN model in Z+ID: simple extension of UCI) model $\int_{-\infty}^{\infty} = \frac{N}{2\pi} \phi E$

Conclusion

- Fractons broaden the phenomenology we should expect to describe using continuum field theories
- This phenomenology is rich, can extend many models and has many generalizations: e.g. different fibers/ connections, time-localized fractons, and matter coupling
- Behavior characteristic OS Stractons can emerge in a simple U(1) tensor continuum field theory
 - The presence of fracton-like defects in real Crystal lattices is well established

References

- Seiberg and Shao, arXiv: 2003. 10466 (2020)
- · Pretko, et.al.
 - 6 PRB 97, 085116 (2018)
 - 6 PRB 98, 115 134 (2018)
 - GPRL 120, 195301 (2018)
 - GarXiv: 2001.01722 (2020)
- · Dubinkin, Rasmussen, and Hughes, Ann. Phys. 422, 168297

(2020)

- · Vijay, Haah, and Fu, PRB 94, 235157 (2016)
- Tong, Gauge Theory (2018)