

Dynamic Response of Dissipative Spin Chains

APS March Meeting • F31.012 Spenser Talkington & Martin Claassen University of Pennsylvania 5 March 2024

Dynamic Response of Dissipative Spin Chains

Contours and Correlators

Take expectation values at times on the Keldysh contour

- Can express two-point correlators in terms of G^R, G^A and G^K
- Multiple contours is generalized by OTOCs

Spenser Talkington • 2402.06593

Dynamic Response of Dissipative Spin Chains

Lindblad Master Equation

 Time evolution in the limit of continuous measurement by a memoryless bath $i\dot{\rho} = \mathcal{L}[\rho]$

$$i\dot{
ho} = (\mathcal{L}^{\mathrm{coh.}} + \mathcal{L}^{\mathrm{n.h.}} + \mathcal{L}^{\mathrm{jump}})[
ho]$$
 where,

$$\mathcal{L}^{\text{coh.}}[\rho] = [H, \rho]$$
$$\mathcal{L}^{\text{n.h.}}[\rho] = -i\frac{\Gamma}{2}\sum_{m} \{J_m^{\dagger}J_m, \rho\}$$
$$\mathcal{L}^{\text{jump}}[\rho] = i\frac{\Gamma}{2}\sum 2J_m\rho J_m^{\dagger}$$

 $\sim 2 \checkmark$

Spin chain with boundary dissipation. Jump operators linear in spins map to jump operators linear in fermions under Jordan-Wigner transformation.

Energy scales
J: spin-spin coupling
h: transverse field
Γ: dissipation strength

Dynamic Response of Dissipative Spin Chains

Green's Functions

• We want to probe the steady state with static density response $\langle S^z \rangle_{ss}$ and dynamic response $S_{i,j}^z(\Omega) = \int dt \ e^{-i\Omega t} \langle [S_i^z(t), S_j^z(0)] \rangle_{ss} \theta(t)$

- These can be expressed in terms of Green's functions
 - Closed system: G^R and G^A
 - Open system: G^R, G^A and a Keldysh Green's function G^K
- Jump terms lead to complex self energy!
- Wick's theorem can be used to reduce multi-point
 correlation functions to two-point correlation functions

Lindblad-Keldysh GFs:

- Thompson and Kamenev, Ann. Phys. 455, 169385 (2023)
- McDonald and Clerk, Phys. Rev. Res. 5, 033107 (2023)

Ising and XY Models: Closed Systems I

- Transverse field XY spin chain is paradigmatic example of gapped/gapless quantum matter $H_{XY} = \sum_{n=1}^{N-1} J_n^x S_n^x S_{n+1}^x + J_n^y S_n^y S_{n+1}^y + \sum_{n=1}^{N} h_n S_n^z$
- Jordan-Wigner transformation to fermions
- Find magnetization
 - Paramagnetic to ferromagnetic transition
- Susceptibility diverges with a power law

 $h_{\perp}^{c}\left(J_{y}\right)$

0 -

-4

FΜ

PM

Dynamic Response of Dissipative Spin Chains

• Transverse field XV spin shain is paradiamat

Ising Analvtic

Numeric

 10^{0}

Ising and XY Models: Closed Systems II

• Dynamic correlation function

$$\chi_{ij}(\Omega) = \sum_{n>0} \frac{\langle u_0 | S_i^z | u_n \rangle \langle u_n | S_j^z | u_0 \rangle}{\Omega + i\eta - (\epsilon_n - \epsilon_0)}$$

- Probe excitations above |u₀>
- See the structure of gapped and gapless excitations
- All negative energy states are filled (think Pauli blocking)

Dynamic Response of Dissipative Spin Chains

Interlude

Closed Systems

- Hermitian
- Real eigenvalues
- Orthogonal eigenstates
- Fermi-Dirac and Bose-Einstein distributions

Open Systems

- Non-Hermitian
- Complex eigenvalues
- Bi-orthogonal eigenstates
- Distribution function given by G^{K}
 - In Lindblad formalism this does not recover FD and BE distribution functions in the limit of weak dissipation

Ising and XY Models: Open Systems I

- Spin chain with boundary dissipation S⁺ on left, S⁻ on right
- New phase: spin-density wave
 - Magnetization <S^z> vanishes, but its higher moments do not
 - Phase boundary is very different from equilibrium phase boundary
- Wavelength diverges and <(S^z)²> exhibits power-law scaling on near critical point h^c
- Choose model with $J^x=1$, $J^y=1/3$ so that $h^c = 1$

Dynamic Response of Dissipative Spin Chains

Ising and XY Models: Open Systems II

• Dynamic correlation function

$$\mathcal{S}_{i,j}^{z}(\Omega) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \left(\operatorname{Tr}[S_{i}^{z}G^{R}(\omega)S_{j}^{z}G^{K}(\omega+\Omega)] + \operatorname{Tr}[S_{i}^{z}G^{K}(\omega-\Omega)S_{j}^{z}G^{A}(\omega)] \right)$$

- Fractional occupation given by distribution function for $\rho_{\rm ss}$
 - States at all energies contribute
 - Spectral gaplessness for h < h^c
- Vertical lines at q_{SDW} from SDW
- Dispersing modes from $2q_{SDW}$

8

Spenser Talkington • 2402.06593

Dynamic Response of Dissipative Spin Chains

Ising and XY Models: Open Systems III

Strong coupling (Γ~J)

Dynamic Response of Dissipative Spin Chains

Dissipation on NISQ Hardware

- Google QuantumAI experiment
 - Dissipative Ising model (2D)
 - Use ancillas with resets to simulate dissipative memoryless baths
 - Mi et al, 2304.13878
- Cool the system towards its ground state through stroboscopic evolution: unitary evolution followed by dissipative evolution
- Potential to realize other strongly dissipative systems on NISQ devices

Dynamic Response of Dissipative Spin Chains

Our Recent Prep

- Accessible introduction t
- Expressions to directly ca

Nonlinear Shift Response in Bernal Bilayer Graphene

Outlook

- Dissipative engineering is a promising direction to control systems and realize out of equilibrium physics
- Finite frequency probes of excitations are readily accessible in our formalism
- Generalizations to interacting systems are the frontier
 - Prethermal plateaus and avoiding thermalization at long-times
 - RPA and collective dissipative phenomena
 - And more!

Spenser Talkington • 2402.06593

Spenser Talkington and Martin Claassen thank NSF for support through Grant No. DGE-1845298 and DMR-2132591 respectively

