Dissipation Induced Flat Bands

APS March Meeting • T55.00010 • 17 March 2022 Spenser Talkington and Martin Claassen University of Pennsylvania

Dissipation Induced Flat Bands

Why Flat Bands?

- Dominant Coulomb Interaction + Fractional Filling = Interesting Physics
 - Fractionalized states
 - Superconductivity
 - Charge orders
 - And more!

Talkington and Claassen • UPenn

Dissipation Induced Flat Bands

Gross Tuning vs Fine Tuning

- Key question: "how do we make Coulomb interactions dominant?"
 - Solution: flatten the band
- Moiré flat bands are seen as "finetuned" solution

Session D44: Flatbands: Finetuning and Interactions
Invited Live Streamed

- Other prominent flat bands have limitations
 - Kagome lattice flat band is not isolated
 - Atomic insulators don't exhibit interesting collective behavior
- Here: a new, robust mechanism to flatten bands

Substrate Engineering

- Couple low-D system and high-D substrate
- Coupling strength Γ
- "Dark space" coupling symmetry

$\Gamma=0.t$ 3t/2t/2 0 -t/2-3t/X Μ

Band Flattening in QWZ Model

Talkington and Claassen • UPenn

Dissipation Induced Flat Bands

Lindbladian Approach to Coupled Systems

• Introduce a superoperator $\mathcal L$

 $i\dot{
ho} = \mathcal{L}[
ho]$

• Expressed as $\mathcal{L}[\rho] = [H, \rho] - i\frac{\Gamma}{2}\sum \left(\{J_m^{\dagger}J_m, \rho\} - 2J_m\rho J_m^{\dagger}\right)$

a and b encode substrate and coupling

jump operators

$$T_m(\boldsymbol{k}) = \sum_{\alpha} a_{m,\alpha}(\boldsymbol{k}) c_{\boldsymbol{k},\alpha} + b_{m,\alpha}(\boldsymbol{k}) c^{\dagger}_{-\boldsymbol{k},\alpha}$$

• Normal modes of ${\cal L}$

- Particle-like
- Hole-like
- Generalized (dissipative) band structure

Dissipation Induced Flat Bands

4

Matrix Representation of Lindbladian

- We want the normal modes of ${\cal L}$
- Express in terms of "left" and "right" superfermions

$$\ell_{k,\alpha}\rho = c_{k,\alpha}\rho\mathcal{P}$$
 $r_{k,\alpha}\rho = \rho c_{k,\alpha}^{\dagger}\mathcal{P}$ Fermion parity operator (-1)^N

• Generalization of Prosen's "third quantization" New J. Phys. 10, 043026 (2008)

• With
$$\mathcal{L} = \mathbf{\Phi}^{\dagger}[L_{\mathrm{coh}}(\mathbf{k}) - iL_{\mathrm{dis}}(\mathbf{k})]\mathbf{\Phi}$$
 for $\mathbf{\Phi}_{\mathbf{k}} = (\boldsymbol{\ell}_{\mathbf{k}}, \boldsymbol{r}_{\mathbf{k}}, \boldsymbol{\ell}_{-\mathbf{k}}^{\dagger}, \boldsymbol{r}_{-\mathbf{k}}^{\dagger})$

$$\begin{array}{c} \text{BdG form} \\ L_{\text{coh}} - iL_{\text{dis}} = \begin{pmatrix} H_{\boldsymbol{k}} & 0 & 0 & 0 \\ 0 & H_{\boldsymbol{k}} & 0 & 0 \\ 0 & 0 & -H_{-\boldsymbol{k}}^{\top} & 0 \\ 0 & 0 & 0 & -H_{-\boldsymbol{k}}^{\top} \end{pmatrix} - i\frac{\Gamma}{2} \begin{pmatrix} A_{\boldsymbol{k}} - B_{\boldsymbol{k}} & -2B_{\boldsymbol{k}} & C_{\boldsymbol{k}} - C_{-\boldsymbol{k}}^{\top} & 2C_{-\boldsymbol{k}}^{\top} \\ -2A_{\boldsymbol{k}} & B_{\boldsymbol{k}} - A_{\boldsymbol{k}} & -2C_{\boldsymbol{k}} & C_{\boldsymbol{k}} - C_{-\boldsymbol{k}}^{\top} \\ -2A_{\boldsymbol{k}} & B_{\boldsymbol{k}} - A_{\boldsymbol{k}} & -2C_{\boldsymbol{k}} & C_{\boldsymbol{k}} - C_{-\boldsymbol{k}}^{\top} \\ C_{\boldsymbol{k}}^{\dagger} - C_{-\boldsymbol{k}}^{\ast} & -2C_{-\boldsymbol{k}}^{\ast} & B_{-\boldsymbol{k}}^{\top} - A_{-\boldsymbol{k}}^{\top} & 2A_{-\boldsymbol{k}}^{\top} \\ C_{\boldsymbol{k}}^{\dagger} - C_{-\boldsymbol{k}}^{\ast} & C_{\boldsymbol{k}}^{\dagger} - C_{-\boldsymbol{k}}^{\ast} & 2B_{-\boldsymbol{k}}^{\top} & A_{-\boldsymbol{k}}^{\top} - B_{-\boldsymbol{k}}^{\top} \end{pmatrix}$$

Talkington and Claassen • UPenn

Dissipation Induced Flat Bands

Symmetries of the Lindbladian Matrix Rep.

- We can write in terms of pseudospins for particles/holes η and left/right contours τ to make the symmetries manifest
- L has BdG form, so we expect
 - Charge conjugation symmetry

$$\mathcal{C}^{-1}L^{\top}\mathcal{C} = -L \qquad \qquad \mathcal{C} = \eta_1 \otimes \tau_0$$

• Time reversal symmetry (here "contour-reversal symmetry")

$$\mathcal{T}^{-1}(iL)^*\mathcal{T} = iL \qquad \mathcal{T} = \eta_2 \otimes \tau_2$$

• Chiral symmetry

$$\mathcal{S}^{-1}(iL)^{\dagger}\mathcal{S} = -iL$$
 $\mathcal{S} = i\eta_3 \otimes \tau_2$
(anti)-commutation relations are generalized for
non-Hermitian L, see Phys. Rev. X **8**, 031079 (2018)

Dissipation Induced Flat Bands

Dark Space Symmetry

- Impose one additional symmetry $\mathcal{D}^{-1}L\mathcal{D}=L$ $\mathcal{D}=\eta_3\otimes au_1$
- L_{dis} then becomes Hermitian!
- L_{dis} has a dissipationless "dark space" with dim $\ge N$
- For $\Gamma \gg t$, L_{coh} is a perturbation $\widetilde{L}_{ij} = \langle \phi_i | L_{coh} | \phi_j \rangle$
 - N long-lived (generically dispersive) bands
 - Contour reversal symmetry $\Longrightarrow \epsilon(m{k}) \leftrightarrow -\epsilon^*(-m{k})$
 - $\operatorname{Tr}(\widetilde{L}) = 0$
 - N odd (per spin) => "dangling" zero mode guaranteed
 - N even (per spin) \implies no guarantee of zero modes
- Second order corrections lead to finite lifetime

An ansatz that fulfills this symmetry is $(b_{m,1}, \ldots, b_{m,N}) = e^{iS}(a_{m,1}, \ldots, a_{m,N})$ where S is any real, symmetric matrix. This ansatz holds for a superconductor.

What Does it Mean to Have an Odd #?

- Real systems often have a few bands near the Fermi energy and a spaghetti of bands at large positive and negative energies
 - How can we assign a system a number of bands?
- Only count the bands in an energy window
 - E.g. The window for which Γ is large to the bandwidths and energies

Dissipation Induced Flat Bands

One Band Spinful Model

- Let $H(k) = d(k)\sigma_0 + \lambda(k)\sigma_3$ with d(k) even, $\lambda(k)$ odd
- Choose both jump operators of the form $J_{\sigma}=c_{m k,\sigma}+c^{\dagger}_{-m k,-\sigma}$
 - Both leads to TRS
- Nearest neighbor hopping
- Triangular Lattice
- Ex. isolated almost flat bands
 - Almost MA-TBLG
 - Twisted bilayer WSe₂ at ~2°
 - Twisted bilayer PtSe₂ at ~6°

Dissipation Induced Flat Bands

Experimental Proposal

- Twisted bilayer
 - TBLG (near magic angle)
 - WSe₂ (~2°)
 - PtSe₂ (~6°)
- On top of a *s*-wave superconductor
 - Or a high-T_c superconductor
- Ex. T dependence of near-IR optics
 - Sharper absorption edge
 - Narrower Drude peak
 - Although there are issues with probing the superconductor vs probing the surface
- Could also do ARPES, pump-probe, or possibly even interferometry

- Flat bands exhibit a panoply of fascinating strongly interacting phases
- Substrates need not be inert and can help to engineer flat bands
- We showed that this engineering can rely on the symmetries of the coupling between the system and the substrate
 - When a "dark space" symmetry holds, flat bands form above a critical dissipation rate
 - This does not rely on the crystalline properties of the system
 - This is most applicable for flattening already nearly flat bands so that Coulomb dominates over kinetic energy – this is tunable!