
Math 156: Final Project Report
Generation of Autocomplete Text Using the Apriori Algorithm
and Long Short-Term Memory Recurrent Neural Networks

Kalsuda Lapborisuth and Spenser Talkington
Department of Mathematics, University of California at Los Angeles,

520 Portola Plaza, Los Angeles, California 90095, USA
(Dated: July 28, 2020)

Autocomplete text is a time saving technology that proposes a completion to a given string
of characters or words. In this paper, we detail implementations of autocomplete text using the
Apriori Algorithm and Long Short-Term Memory Recurrent Neural Networks for the generation
of potential next words in a given phrase. Additionally, we train these two methods to the Enron
Email Dataset and provide a quantitative evaluation of the efficiency of these methods and and
a qualitative comparison of the results generated by these methods. We find that in general, the
quality of the suggestions by the LSTM method are superior to the suggestions generated by the
Apriori algorithm, even when the two methods are trained for the same amount of time with the
same text training data.

I. INTRODUCTION

Autocomplete is a feature that predicts the rest of a
word, phrase, or sentence inputted by a user. The fea-
ture decreases the number of keystrokes needed in order
to complete a sentence and assists users in writing diffi-
cult phrases. Since the prediction generated by autocom-
plete relies on a probabilistic association between words
in the training data, autocomplete is especially effective
in structured writing, such as programming languages
and emails.

In this project, we implemented the Apriori Algorithm
and Long Short-Term Memory Recurrent Neural Net-
works (LSTM) to suggest a possible next word to com-
plete a phrase based on the context. We found that the
Apriori algorithm tends to produce grammatical results
half the time, while the LSTM method produces gram-
matical (if not telepathic) results nearly every time. Ad-
ditionally, once the methods have been trained, the cost
to produce a series of potential next words based on a
given phrase is low, and so the methods are computation-
ally feasible even on low-power devices such as phones.

We note that while the training process is both mem-
ory and processing intensive, the training can be con-
ducted on a centralized cloud computer, freeing local
resources with no expense to the predictive accuracy.
This centralized processing likely explains the widespread
adoptions of autocomplete technology in text messaging
programs and within email clients.

In Section II we introduce the Enron Email Dataset.
In Sections III and IV we detail the mathematical foun-
dations of the Apriori Algorithm and LSTM. In Section
V, we review our computational implementation of the
two methods, and in Section VI, we detail the results.

II. DATASET

In the open discourse, the Enron Email Dataset is a
touchstone for machine learning, since it is representative
of the emails composed in a work setting, and is freely
available (as opposed to your Google searches or emails
which only Google has access to). Consequently we select
this dataset to train the methods.

In 2001, it was discovered that Enron had committed
insider trading, price fixing, and had systematically fal-
sified its accounts to make it appear that its debts and
liabilities were lower than they were, and their assets and
profits were higher than they were. In the proceeding in-
vestigation and lawsuit, the Federal Energy Regulatory
Commission secured about 500,000 email messages from
a total of 150 users, who were in management positions
at Enron Corporation. These emails comprise the Enron
Email Dataset and are freely available online.

To process the email data, we concatenated all email
data into one plain text file, and read the data into
Python. We then scrubbed the data to replace capital
letters with lowercase letters, and removed all special
characters. Due to limited memory available for com-
putation, we chose an arbitrary portion from the con-
catenated text with the length of 700000 characters to
be our training data.

III. APRIORI ALGORITHM

Consider a set of words W = {w1, w2, . . . , wN} and a
set of phrases P = {p1, p2, . . . , pM} (as in Section II). Let
U, V ⊆W . Define the support of a U as:

supp(U) =
number of phrases containing U

total number of phrases
(1)

Define the confidence that V will be in a phrase given

2

U in in the phrase:

conf(U → V) =
supp(U ∪ V)

supp(U)
(2)

Now, select a support threshold s ∈ (0, 1] and a con-
fidence threshold c ∈ (0, 1]. We are interested in cre-
ating rules Ri = {Ui, {Vi}} such that supp(Ui) ≥ s,
supp(Vi) ≥ c, and conf(Ui → Vi) ≥ c. A näıve im-
plementation creates all possible phrases Ui and Vi and
tests their support and confidence. This method is com-
putationally intensive with many possible rules, i.e. par-
titioning words into three categories with repetition [1]:

|R| = 3M − 2M+1 + 1 (3)

This number of candidate rules is infeasible for a com-
putational implementation, since M is the number of
words, which is M >∼ 104.

Instead, we use the Apriori algorithm [2]. The Apriori
algorithm proceeds by way of creating frequent phrases,
and then creating rules.

Begin by creating the subset:

W (1) = {wi ∈W : supp(wi) ≥ s} (4)

Then create the further subset using the “join rule:”

W (2) = {w(1)
i ∪ w

(1)
j : w

(1)
i , w

(1)
j ∈W

(1) ∧

supp(w
(1)
i ∪ w

(1)
j) ≥ s ∧

|w(1)
i ∪ w

(1)
j | = 2}

(5)

And, similarly:

W (3) = {w(2)
i ∪ w

(2)
j : w

(2)
i , w

(2)
j ∈W

(2) ∧

supp(w
(2)
i ∪ w

(2)
j) ≥ s ∧

|w(2)
i ∪ w

(2)
j | = 3}

(6)

Continue until W (n+1) = ∅.
Now, to create rules, for each w

(n)
i ∈ W (n), generate

all partitions of w
(n)
i into two sets, and select based on

confidence. The set of rules is then:

R = {{u(n)i , {v(n)i }} : conf(u
(n)
i → v

(n)
i) ≥ c ∧

u
(n)
i ∩ v(n)i = ∅ ∧

u
(n)
i ∪ v(n)i = w

(n)
i ∧

w
(n)
i ∈W (n)}

(7)

We note that n << M , and the number of candidate
rules is the number of partitions into two non-empty sets,
i.e. the number of binary strings of length n that are not
all zero or all one [1]:

|R| = |W (n)| (2n − 2) (8)

To select the next word from a given partial phrase ρ,
if |ρ| ≤ n, then create the set of potential next words

(allowing duplication of words/elements in Ω, where rLj
is the left part/hypothesis of the rule):

Ω = {wi : wi ∈ (rLj \ ρ) ∧ |rLj ∩ ρ| = |ρ| ∧ rj ∈ R}
(9)

If Ω = ∅, then relax the condition |rLj ∩ ρ| = |ρ| to

|rLj ∩ ρ| = |ρ| − 1, |rLj ∩ ρ| = |ρ| − 2, etc. When Ω 6= ∅,
then select the next word in the partial phrase as the
most frequent element in Ω.

FIG. 1: Schematic representation of the generation of
frequent phrases (itemsets) from all phrases (itemsets).

Image from [1].

A. Example: Course Planning

Here we consider a concrete (small-scale) example of
the Apriori algorithm. Suppose that Erkki the engineer-
ing counselor is trying to learn which classes first years
typically take together so that he can inform the regis-
trar. Erkki brings up the course schedules for six stu-
dents:

p1 = {MATH 32A, MSE 104, ENGL 90, LING 1}
p2 = {MATH 31B, PHYS 1B, CHEME 45, HIST 1C}
p3 = {MATH 32A, PHYS 1B, HIST 1C, LING 1}
p4 = {MATH 32B, PHYS 1B, CHEME 45}
p5 = {MATH 32B, MSE 104, STATS 10, ENGL 90}
p6 = {MATH 31A, PHYS 1A, CEE M20, HIST 1C}

(10)

All possible courses are:

W = {MATH 31A, MATH 31B, MATH 32A, MATH 32B,

MSE 104, CEE M20, ENGL 90, HIST 1C, LING 1,

PHYS 1A, PHYS 1B, CHEME 45, STATS 10}
(11)

Now, suppose that Erkki chooses a minimum support
of s = 0.33. Then he finds:

W (1) = {MATH 32A, MATH 32B, MSE 104, ENGL 90,

HIST 1C, LING 1, PHYS 1B, CHEME 45}
(12)

3

He then creates all possible subsets of W (1) with 2
elements (viz. 8 choose 2 = 28), and selects those with
support greater than or equal to s:

W (2) = {{MATH 32A, LING 1}, {MSE 104, ENGL 90}
{HIST 1C, PHYS 1B}, {PHYS 1B, CHEME 45}}

(13)

Now, the only candidate element for W (3) is:

{HIST 1C, PHYS 1B} ∪ {PHYS 1B, CHEME 45}
= {HIST 1C, PHYS 1B, CHEME 45}

(14)

This course combination only occurs in P2, so its sup-
port is 1/6, and so:

W (3) = ∅ (15)

Next, to form the rules, Erkki refers to W (2), in which
there are four elements, and consequently eight possible
rules. If Erkki selects a confidence level of 0.75, he will
find the rules:

R = {{MATH 32A, {LING 1}}, {LING 1, {MATH 32A}},
{MSE 104, {ENGL 90}}, {ENGL 90, {MSE 104}},
{CHEME 45, {PHYS 1B}}}

(16)

Now, suppose that Erkki knows that a student is taking
four classes and that three of their classes are:

ρ = {MATH 32A, PHYS 1A, HIST 1C} (17)

Erkki then finds that:

Ω = {LING 1} (18)

And, so Erkki predicts that the student is taking:

{MATH 32A, PHYS 1A, HIST 1C, LING 1} (19)

B. Limitations of the Apriori Algorithm

While the Apriori Algorithm can predict the next word
in a phrase ρ = {ρ1, ρ2, . . . , ρm} for which some of the
elements of ρi /∈ W , the words it will predict ρm+1 are
limited to those that are present in the training data, i.e.
ρm+1 ∈ W . In particular, this suggests that for optimal
predictive performance the training data should be suf-
ficiently inclusive to encompass all words that would in
fact come next.

Another limitation (and the source of its improvement
over the näıve rule generation method) is that the Apriori
Algorithm imposes the cutoffs for the support s and the
confidence c, such that infrequent and improbable asso-
ciations are suppressed. However, infrequent phrases do
occur, and from an entropic standpoint carry the most in-
formation (unexpectedness). To improve this situation,

one can lower c and s, but this increases the required
computations, and biases results towards less frequent
phrases. To remove this bias, the confidence in each rule
can be used to assign a weight the entries in Ω, rather
than a simple 1 or 0 counting mechanism.

Perhaps the most severe limitation is that the Apriori
Algorithm is irrespective of order. In particular, the word
at the beginning of a phrase, ρ1, carries the same weight
as a word at the end of the phrase, ρm. While this is not
a limitation when order is unimportant, it is a limitation
in writing, since the order of words does matter.

IV. LONG SHORT-TERM NEURAL
NETWORKS

As a result of the universal approximator theorem, “for
a broad range of hidden unit activation functions and
sufficiently many hidden units, a two-layer NN can uni-
formly approximate any continuous function on a com-
pact input data to arbitrary accuracy” [3]. The class
of all continuous functions is very large, and so neural
networks are useful for a wide range of applications.

Here, we are interested in finding the next word in
a phrase. Within the context of neural networks, this
involves classifying an input phrase ρ to a category wi ∈
W , where ρ and W are as in Section III.

In this section, we review neural networks, introduce
recurrent neural networks, and detail Long Short-Term
Memory Neural networks.

A. Neural Networks

Neural networks are functions of the form:

y(x) = fN (WT
NfN−1(WT

N−1 . . . f2(WT
2 f1(WT

1 x)))) (20)

Where fn are usually non-linear functions such as the
sigmoid function, tanh function, or the relu function, and
Wn are weights assigned to each layer (not sets of words).
Here, we use a notation where it is understood that at
each layer a bias term is included in the output vector
from the previous layer.

With a set of phrases as training data, where the next
word is separated from the phrase and used as the output:

P = {(ρ(1), ρ(1)|ρ(1)|+1
), . . . , (ρ(M), ρ

(M)

|ρ(M)|+1
)} (21)

it is then possible to assign a cost to the output y for an
input ρ(m):

Jm = J(y(ρ(m))|(ρ(m), ρ
(m)

|ρ(m)|+1
)) (22)

For regression, the cost function is typically of a least
squares form, while for classification the cost function
could take the form of the Fisher Criterion. Here we use
the categorical cross-entropy:

Jm = −ρ(m)

|ρ(m)|+1
ln(y(ρ(m))) (23)

4

Within this framework, it is then possible to use gra-
dient descent by way of evaluating the error using back-
propagation. For more information on this, we refer the
reader to Section 5.3 of Bishop [3].

While it is in principle possible to learn the associa-
tions between inputs and outputs, we again run into the
issue of cardinality. In the näıve gradient descent neural
network, the number of possible input phrases increases
rapidly with |ρ| (note |ρ| << |W |):

|{ρ : |ρ| = t ∧ t ∈ N}| =
(
|W |
|ρ|

)
(24)

=
|W |!

|ρ|! (|W | − |ρ|)!
(25)

While this is in principle solvable, the solution de-
mands more hidden units than can be modeled. In order
to solve this problem, the dimension of the input must be
reduced. To do so, feed the input vector one component
(or a few) at a time into the network. If one component
is fed, then the dimensionality is reduced to |W |. But
then the relationship between the components of the in-
put vector is lost. Recurrent neural networks solve this
problem through a direct combination of the current data
and previous output.

B. Recurrent Neural Networks

FIG. 2: Schematic representation of a Recurrent Neural
Network with three data vectors x0, x1, and x2. Image

from [4].

In Recurrent Neural Networks (RNN), the output from
previous information is used to determine the behavior
of the current layer [4]. We define the input vector to the
nth layer as a combination of the activated output of the

n− 1th layer, including a bias term h
(0)
n−1 = 1, and xn is

a data vector with a bias term x
(0)
n = 1:

zn =

(
xn
hn−1

)
(26)

In this configuration, the activated output of the nth
layer is given in terms of a nonlinear function f , fre-
quently tanh, or the relu function, with hidden-layer

weights Wh and input vector zn. We take f to be the
relu function, and:

hn = f(WT
h zn) (27)

However, RNN methods are often limited by a “van-
ishing gradient” problem. Because of the connection be-
tween the hidden layers, the input from many timesteps
ago are multiplied several times by the constant weight
vector, Wh, which result in outputs that collapse to zero
or diverge towards infinity [5]. As a result, RNN are
unable to model long-term dependencies.

In particular, a traditional RNN method for autocom-
plete will not be able to effectively use information from
the start of a paragraph to predict the next word near
the end of the paragraph.

C. The Long Short-Term Neural Network (LSTM)

FIG. 3: Representation of a Memory cell in Long
Short-Term Neural Network between its input state and

output state [6].

To overcome this limitation, LSTM utilizes a function
called a memory cell between its input layer and hidden
layer, as depicted in FIG 3. The component of a state
in LSTM is still the same as in RNN, however the mem-
ory cell decides how much of the input to consider, how
much of the internal state to forget, and how much of the
output to release [6].

Specifically, three new weight matrices are introduced
to accomplish this task: Wi, Wf , and Wo. The weight
matrices work in conjunction with sigmoid functions to
create “valves” which scale quantities by a factor in (0, 1):

hn = σ(Wozn) f

(
WT
h

[
σ(Wizn)

(
xn
hn−1

)
+ σ(Wfzn)

(
0

hn−1

)])
(28)

The valves ensure that the outputs do not diverge,
and the new weight vectors allow LSTM to memorize
the parts of phrases that are important and to forget the
parts that are not.

The weight vectors may be learned by stochastic gra-
dient descent. However we use the Adam optimizer since
we found that it gave results more quickly than stochastic
gradient descent.

5

D. The limitations of LSTM

LSTM is memory instensive because it loads the en-
tire training dataset into memory. While this is benefi-
cial because long term associations can be determined,
erroneous associations can be determined too. In partic-
ular, for the Enron Email Dataset, LSTM would look for
associations between adjacent emails, even if their con-
tent was not related. As a result of this, we expect that
the LSTM method would work best for one work by one
author on one topic, such as Shakespeare’s Hamlet.

Additionally, LSTM can generate associations that are
technically correct, but that are not useful. For exam-
ple, always suggesting the word “the.” To address this
problem, there is an emerging field of attention models
which process the training data before giving it to LSTM
to emphasize the “big picture,” of the data and to direct
what LSTM should focus on.

V. COMPUTATIONAL IMPLEMENTATION

For the computational implementation, we followed
the descriptions of the algorithms provided in Sections
III and IV. In order work on the project collaboratively,
we used Python through Google Colab’s implementa-
tion of iPython. We train our models the Google Co-
lab normal instance without the Graphic Processing Unit
(GPU) in order to fairly compare the speed of the two
method. However, we should note that both methods
can be trained more efficiently when optimized for par-
allel computing on the GPU.

A. Data pre-processing

We loaded and scrubbed the text with basic Python
functions, removing all of the headers, email addresses,
and special characters. After compiling all of the cleaned
text together, we arbitrarily selected a largest portion
possible from the text to train our model within the mem-
ory limit in Google Colab, its length being 700000 char-
acters long.

Particularly for the Apriori algorithm, we then broke
the data into phrases P = {pm} through the sentence
ending characters ., ; and ?. If any sentences are longer
than 7 words, we split them evenly into phrases of length
3-6 words. Each phrase was composed of one or more
word wn ∈W stored as a tuple.

However, for the LSTM algorithm, we generate the
training input vectors based on the data as shown in FIG
4. The training inputs are two words appearing consecu-
tively in the text and their corresponding target outputs
are the word that appears right after those two input
words. Using the natural language toolkit (nltk) pack-
age, we create a dictionary that maps each unique word
to a number. We then use this dictionary to vectorize
the training inputs and the target outputs.

FIG. 4: An example of input vector and target value
generation from input text for the LSTM model

We should note that the length of the training inputs
should be adjusted to the nature of the text. The sen-
tence structure in corporate email is often straightfor-
ward and concise. Consequently, the appropriate length
of training inputs for this project is 2-3 words, as the
next words are often heavily dependent only on the few
words immediately preceding itself. If the text has a more
complicated structure, several LSTM models trained on
different input length can easily be used to better predict
the next word for text with complicated structure.

B. Configuration of the methods

After pre-processing the data, we used the keras neu-
ral network library to implement the LSTM algorithm,
and used the efficient-apriori library to implement
the backend of the Apriori Algorithm. The LSTM net-
work contains 5 layers: an input layer, two LSTM layers,
and two fully connected layers, which uses relu and soft-
max as the activation function. We then wrapped both
methods within functions that accepted a partial phrase
and returned the three best next words.

For the Apriori algorithm, we trained two predictors
with the parameters: first, s = 0.0002 and c = 1, and
second, s = 0.0003 and c = 1. For the LSTM method,
we also trained two predictors over 50 epochs and 150
epochs. (Note: an epoch is a sweep of descent with size
equal to the number of parameters.)

VI. RESULTS

A. Quantitative

We compare the training time, training memory usage,
suggestion speed, the size of the trained models gener-
ated by the Apriori Algorithm to those generated by the
LSTM method.

6

Table 1: Quantitative comparisons of the models

We find that both methods require at least an hour to
train a model that is at least able to adequately predict
the next word using the Enron Email Dataset.

In our implementation, the LSTM algorithm requires
more memory to store the vectorized training inputs than
the Apriori algorithm. For an input text with n words,
the LSTM method needs O(n2) space to store the input.
The Apriori method only requires O(n) space to store
phrase input. Conversely, the memory required by LSTM
method during training is not dependent on the number
of epochs, while the memory used by the Apriori method
depends on the value of the minimum support, s.

We also find that both LSTM models are able to gen-
erate the best three predictions 250-500 times faster than
the Apriori models (although even the Apriori algorithm
still takes less than three seconds). Furthermore, we note

that, despite the size of the LSTM models being 3-6 times
larger than the size of Apriori models, the size of LSTM
is not dependent on its training epochs while the size of
Apriori models are dependent on the value of the mini-
mum support s.

The constant model size, fast prediction time, and
comparable training time makes LSTM preferable to the
Apriori algorithm for a real world implementation of au-
tocomplete text.

B. Qualitative

Additionally, we provide a qualitative analysis of the
results produced by the Apriori Algorithm and LSTM. In
particular, we provide three sets of three partial phrases
with short |ρ| = 2, medium |ρ| = 4, and long |ρ| = 6
length. With each algorithm, we generate three possible
words to follow the given assign phrase and rate these

words as grammatically good , okay , or bad .

The partial phrases were selected to have clear fol-
lowing words or word types, express the diversity of the
English language, and be representative of phrases com-
monly encountered in business emails.

Table 2.1: Qualitative comparison of the next word suggestions by Apriori (s = 0.0003) vs LSTM (50 epochs)

Apriori Algorithm LSTM Method
Partial Phrase 1 2 3 1 2 3

let me you in at know in take

I would you in at like be appreciate

all supporting you in at the of to

after the presentation you starting these at will are have

when our next shipment favorite lite miller of who allow

I have completed the for up starting feedback call copy

after work I will go to the attend in starting success company research

if you have any questions about for up signed capacity plant this

that should be possible on Wednesday you in at several the of

Table 2.2: Qualitative comparison of the next word suggestions by Apriori 1 (s=0.0003) VS Apriori 2 (s= 0.0002)

Apriori 1 Apriori 2

Partial Phrase 1 2 3 1 2 3

let me you in at to way each

I would you in at be to way

all supporting you in at to way each

after the presentation you starting these at starting these at

when our next shipment favorite lite miller favorite lite miller

I have completed the for up starting for signed up

after work I will go to the attend in starting loss please your

if you have any questions about for up signed for up signed

that should be possible on Wednesday you in at the big to

7

Table 2.3: Qualitative comparison of the next word suggestions by LSTM (50 epochs) vs LSTM (150 epochs)

LSTM 50 LSTM 150

Partial Phrase 1 2 3 1 2 3

let me know in take take know to

I would like be appreciate be like suggest

all supporting the of to the doing gasoline

after the presentation you will are have would will are

when our next shipment of who allow of meeting set

I have completed the feedback call copy feedback end holidays

after work I will go to the success company research extent group official

if you have any questions about capacity plant this the a enron

that should be possible on Wednesday several the of and of to

For the partial phrases in Tables 2.1, 2.2, and 2.3, we

see that the Apriori algorithm generates a good result

in its three suggestions about half the time, while the

LSTM method will usually generate at least one good

result.
The low success rate of the Apriori algorithm is largely

because if the combination of input words are not in the
rules generated by the Apriori algorithm, the models fail
to make the next best guess and simply returns a de-
fault set of words. See for example the partial phrase
ρ = {after, the, presentation, you}. Furthermore, we
note that neither model isable to handle a partial phrase
that contains a word outside of the training data. For
example, ”supporting” is not in the training text, and
so both methods perform poorly on the partial phrase
ρ = {all, supporting}.

We find that in general, the quality of the suggestions
by the LSTM method are superior to the suggestions
generated by the Apriori algorithm, even when the two
methods are trained for the same amount of time with
the same text training data.

Interestingly, we find that any LSTM models that are
trained longer than 1 hour are only able to predict the
exact words from the training data for only 10-15% at
a time, as exemplified in FIG 5 and FIG 6. We also
note that the accuracy value that the model converged
to varies when we train the model several time.

FIG 5: The accuracy of LSTM model tested against the
training dataset when trained over 150 epochs.

FIG 6: The accuracy of LSTM model tested against the
training dataset when trained over 50 epochs.

This result is to be expected because various phrases,
especially the more common ones, are often followed by
several different words. For example, the next words that
often follow ’I would’ include ’be’, ’like’, ’suggest’, and
several other verbs. So the model might predict ’be’ when
the sentence in the training data is ’I would like’, which
would be considered to be wrong and inaccurate in this

8

case. However, this clearly does not mean that the sug-
gestions made by the LSTM method is not grammatically
or contextually viable for the next word. Therefore, we
believe that this accuracy fails to capture the true poten-
tial of the LSTM method and, and to further understand
the accuracy of any text autocomplete mode, it is im-
portant to test them on a dataset labeled by human in a
similar manner to our qualitative comparison.

VII. CONCLUSION AND FURTHER
DIRECTIONS

Autocomplete is an invaluable technology. The com-
pletion of phrases results in time savings in both profes-
sional and personal contexts which leads to increased pro-
ductivity and wellbeing. In this report, we presented two
common methods for generating autocomplete text: the
Apriori Algorithm and Long Short-Term Memory Recur-
rent Neural Networks (LSTM). We find that both meth-
ods generally produce grammatical autocomplete text,
and that LSTM usually produces qualitatively better au-
tocomplete text than the Apriori algorithm.

Apriori is predicated on finding frequent phrases and
relations among words, while LSTM is based on finding
optimal combinations of weights for a partial phrase. We
found that both the Apriori algorithm and LSTM de-

mand substantial computational resources during train-
ing, but require minimal computational resources once
trained. We believe that this is a large reason for the
prevalence and impact of autocomplete. In particular,
low-power devices like phones can easily implement au-
tocomplete once training is finished.

Our computational implementations of autocomplete
were limited by the computational resources available in
Google CoLab to train the Apriori Algorithm and the
LSTM method. In particular, for the Apriori Algorthm
when we set the minimum support as s = 0.0002, the
notebook took 159 minutes to run (the s = 0.0001 run
timed out after 6 hours), and for the LSTM method
the notebook consumed all 12 GB of memory available.
We believe that by using massively parallized versions
of these methods (on a GPU based architechture) would
run more quickly and enable more accurate text predic-
tion. Additionally, we believe that increasing the com-
puter memory would enable more detailed models to gen-
erate text.

If we were to continue the project, we would have
tested the methods on a different set of emails, or non-
email text to test its transferability. However within the
project time frame, we found that this was not feasi-
ble. An additional direction to take an extended project
would be to extend LSTM to include methods from novel
“attention based” neural networks.

[1] R. Jain, A beginner’s tutorial on the apriori algorithm
(2017).

[2] R. Agrawal, R. Srikant, et al., in Proc. 20th VLDB , Vol.
1215 (1994) pp. 487–499.

[3] C. M. Bishop, Pattern Recognition and Machine Learning
(Springer, 2006).

[4] Colah, Understanding LSTM Networks (2015).
[5] Y. Bengio, P. Simard, and P. Frasconi, IEEE Trans. 5, 157

(1994).
[6] H. Wang and B. Raj, arXiv:1702.07800 (2017).

https://www.hackerearth.com/blog/developers/beginners-tutorial-apriori-algorithm-data-mining-r-implementation/
https://web.stanford.edu/class/cs345d-01/rl/ar-mining.pdf
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
https://arxiv.org/pdf/1702.07800.pdf

	Math 156: Final Project Report Generation of Autocomplete Text Using the Apriori Algorithm and Long Short-Term Memory Recurrent Neural Networks
	Abstract
	Introduction
	Dataset
	Apriori Algorithm
	Example: Course Planning
	Limitations of the Apriori Algorithm

	Long Short-Term Neural Networks
	Neural Networks
	Recurrent Neural Networks
	The Long Short-Term Neural Network (LSTM)
	The limitations of LSTM

	Computational Implementation
	Data pre-processing
	Configuration of the methods

	Results
	Quantitative
	Qualitative

	Conclusion and Further Directions
	References

