Math 151A at UCLA \diamond Formula Sheet (1 of 2)

Theorems

Mean Value Theorem: between two points of a function at heights $f(a)$ and $f(b)$, there is at least one point with slope $f^{\prime}(c)=[f(b)-f(a)] /(b-a)$.

Extreme Value Theorem: a continuous function on a bounded interval, has a non-infinite maximum and a minimum.

Intermediate Value Theorem: between two points at heights $f(a)$ and $f(b)$, any continuous function passes through all intermediate heights.

Taylor's Theorem, for a \mathscr{C}^{n} function:

$$
\begin{aligned}
f(x)= & {\left[\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}\right] } \\
& +\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
\end{aligned}
$$

Machine Numbers

IEEE 754 is a standard for machine numbers. It encodes a sign \mathbf{s}, a power p , and a mantissa m . Numbers are:

$$
x=(-1)^{\mathrm{s}} 2^{\mathrm{p}-1023}(1+\mathrm{m})
$$

Numbers are encoded to finite precision, which can lead to overflow, underflow, and chopping/rounding errors.
Numeric errors may be quantified as actual, absolute, or relative errors.

Machine epsilon is the largest number such that $1+\epsilon=1$, ex. to five digits, $1+\epsilon=0.10000 \mid \overline{9} \times 10^{1}$, so $\epsilon=0.0001$.

Subtraction can sometimes lead to a "catastrophic" loss in significance. Addition/multiplication/division are nice.

Bisection Method

Given an interval with a root $f\left(x^{*}\right)=0$, bisect the interval and see which half contains the root and update the interval. For continuous functions, if $f(a) f(b)<0$, then $[a, b]$ contains a root. The error, $e_{k}=x_{k}-x^{*}$ is bounded by:

$$
\left|x_{k}-x^{*}\right| \leq \frac{\left|b_{k}-a_{k}\right|}{2}=\frac{\left|b_{0}-a_{0}\right|}{2 \cdot 2^{k}}
$$

The bisection method converges with order $\alpha=1$ and rate constant $\lambda=1 / 2$.

Newton's Method

A less stable, but much faster method of finding roots takes the derivative:

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Newton's method converges with order $\alpha=2$ and rate constant:

$$
\lambda=\left|\frac{f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}\right|
$$

Convergence Order \& Rate

There are many rootfinding methods, but iterative root methods often fulfill:

$$
\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k}-x^{*}\right|^{\alpha}}=\lambda
$$

Where α is the convergence order and λ is the convergence rate. For convergence we need $\lambda<1$, so that $\lambda^{k} \rightarrow 0$.

Fixed Point Convergence

Assume x^{*} is a solution of $g(x)=x$ and $g(x)$ is α times continuously differentiable for all x near x^{*} for some $\alpha \geq 2$. Furthermore assume $g^{\prime}\left(x^{*}\right)=$ $g^{\prime \prime}\left(x^{*}\right)=\ldots g^{(\alpha-1)}\left(x^{*}\right)=0$. Then if x_{0} is chosen sufficiently close to x^{*}, the iteration $x_{k+1}=g\left(x_{k}\right)$ will have:

$$
\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k}-x^{*}\right|^{\alpha}}=\left|\frac{g^{(\alpha)}\left(x^{*}\right)}{\alpha!}\right|=\lambda
$$

Also, if $g^{\prime}\left(x^{*}\right) \neq 0$, and $\left|g^{\prime}\left(x^{*}\right)\right|<1$, and x_{0} is sufficiently close to x^{*}, then:

$$
\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k}-x^{*}\right|^{1}}=\left|g^{\prime}\left(x^{*}\right)\right|
$$

Stopping Conditions

"Do you want a small residual or the actual result?" This will determine the stopping condition you choose. Three common metrics for stopping are:

$$
\begin{array}{lr}
\text { error } & \left|x_{k}-x^{*}\right| \\
\text { residual } & \left|f\left(x_{k}\right)\right| \\
\text { difference } & \left|x_{k+1}-x_{k}\right|
\end{array}
$$

Which of the metrics work for a problem should be carefully considered.

For the Newton Method, with assumptions, a simple bound on the error is:

$$
\frac{\left|f\left(x_{k}\right)\right|}{\left|f^{\prime}\left(x_{k}\right)\right|}<\mathrm{tol} \Longrightarrow\left|x_{k}-x^{*}\right|<\mathrm{tol}
$$

Polynomial Interpolation

For n points $\left(x_{i}, f_{i}\right)$, there is a unique polynomial of degree $\leq n-1$ which interpolates the points. One method to find this is Newton divided differences:
$x_{0} \boxed{f_{0}}$
$x_{1} f_{1}$
$x_{2} f_{2}$

$\frac{\frac{f_{2}-f_{1}}{x_{2}-x_{1}}-\frac{f_{1}-f_{0}}{x_{1}-x_{0}}}{x_{2}-x_{0}}$

The polynomial is for boxed constants: $p(x)=c_{0}+c_{1}\left(x-x_{0}\right)+c_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)$
For equispaced data, error is bounded:

$$
\max _{\left[x_{0}, x_{n}\right]}|f(x)-p(x)| \leq \frac{f^{(n+1)}}{4(n+1)} \frac{1}{n^{n+1}}
$$

This can blow up as in Runge's phenomenon, so Chebyshev spacing and piecewise interpolation are often used.

Vandermonde Matrix

An efficient way to determine $p(x)=$ $\sum_{i} a_{i} x^{i}$ is to solve the matrix equation:

$$
\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
f_{0} \\
f_{1} \\
\vdots \\
f_{n}
\end{array}\right)
$$

Lagrange Polynomials

Another rote way to determine $p(x)=$ $\sum_{i=0}^{n} f_{i} l_{i}(x)$, is Lagrange Polynomials:

$$
l_{i}(x)=\frac{\prod_{k=0, k \neq i}^{n}\left(x-x_{k}\right)}{\prod_{k=0, k \neq i}^{n}\left(x_{i}-x_{k}\right)}
$$

Chebyshev Spacing

The solution of a minimax problem gives the Chebyshev spacing which has the smallest maximal error for $p(x)$. This spacing is for n points on $[0,1]$:

$$
x_{i}=\cos \left(\frac{2 i+1}{2 n+2} \pi\right)
$$

The error bound is:

$$
\max _{\left[x_{0}, x_{n}\right]}|f(x)-p(x)| \leq \frac{f^{(n+1)}}{(n+1)!} \frac{1}{2^{n}}
$$

Piecewise Interpolation

Interpolating intervals piecewisely of size h / N, has an error of $N^{-(n+1)}$ compared to intervals of size h, as expected.

Math 151 A at UCLA \diamond Formula Sheet (2 of 2)

Numerical Differentiation

The idea is to interpolate a set of points with a polynomial, and approximate:

$$
f^{\prime}(x) \approx p^{\prime}(x)
$$

Linear interpolation, with $f_{i}=f\left(x_{i}\right)$:

$$
p^{\prime}(x)=\frac{f_{1}-f_{0}}{x_{1}-x_{0}}
$$

For quadratic, centered, equispaced:

$$
p^{\prime}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}
$$

By Taylor expansion, find the error:
$f^{\prime}\left(x_{0}\right)-\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \approx-\frac{f^{\prime \prime}\left(x_{0}\right)}{2!} h$
In terms of $M_{p}=\max f^{(p)}(x) / p!$:

$$
\begin{array}{ll}
\text { linear } & M_{1} h^{1} \\
\text { quadratic } & M_{2} h^{2}
\end{array}
$$

With an asymptotic error expansion:

$$
e_{h}=c_{p} h^{p}+c_{p+1} h^{p+1}+\ldots
$$

It naturally follows that in $\lim _{h \rightarrow 0}$:

$$
p=\log _{2}\left(\frac{\left|e_{h}\right|}{\left|e_{h / 2}\right|}\right)
$$

For large $h, h^{p+1} \not \approx 0$, and for small h there may be catastophic cancellation. In fact, the optimal error is at $h=\mathcal{O}\left(\epsilon^{1 /(p+1)}\right)$, which is seen from:

$$
e_{h} \leq M_{p} h^{p}+\frac{\epsilon}{h}
$$

Newton-Cotes Integration

The Newton-Cotes method integrates polynomial interpolants to functions:

$$
\int_{a}^{b} d x f(x) \approx \int_{a}^{b} d x p(x)
$$

For a linear interpolant (trapezoid):

$$
\int_{a}^{b} d x p(x)=h \cdot \frac{f_{a}+f_{b}}{2}
$$

For a quadratic interpolant (Simpson):

$$
\int_{a}^{b} d x p(x)=h \cdot \frac{f_{0}+4 f_{1}+f_{2}}{3}
$$

For a quartic interpolant:
$\int_{a}^{b} d x p(x)=h \cdot \frac{3\left(f_{0}+3 f_{1}+3 f_{2}+f_{3}\right)}{8}$
These have associated errors of:

$$
\begin{array}{lr}
\text { linear } & -\left(h^{3} / 12\right) f^{\prime \prime}(\xi) \\
\text { quadratic } & -\left(h^{5} / 90\right) f^{\prime \prime \prime \prime}(\xi) \\
\text { quartic } & -\left(3 h^{5} / 80\right) f^{\prime \prime \prime \prime}(\xi)
\end{array}
$$

Composite Integration

Composite methods use the relation:

$$
\int_{x_{0}}^{x_{n}} d x f(x)=\sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} d x f(x)
$$

For composite linear (trapezoid):

$$
\int_{x_{0}}^{x_{n}} d x f(x) \approx \sum_{i=0}^{n-1} h \cdot \frac{f_{i}+f_{i+1}}{2}
$$

For composite quadratic (Simpson):

$$
\frac{h}{3} \sum_{i=1}^{n / 2}\left[f\left(x_{2 i-2}\right)+f\left(x_{2 i-1}\right)+f\left(x_{2 i}\right)\right]
$$

These have associated errors of:

$$
\begin{array}{ll}
\text { linear } & -\frac{b-a}{12} h^{2} f^{\prime \prime}(\mu) \\
\text { quadratic } & -\frac{b-a}{180} h^{4} f^{\prime \prime \prime \prime}(\mu)
\end{array}
$$

Aitken Order Estimation

For an integral with asymptotic error expansion of $I_{\text {exact }}-I_{h}$, in the $\lim _{h \rightarrow 0}$:

$$
p=\log _{2}\left(\frac{I_{h / 2}-I_{h}}{I_{h / 4}-I_{h / 2}}\right)
$$

Richardson Extrapolation

If there exists an asymptotic error expansion, then through clever addition, one may increase the order. With two results and step sizes $h_{1} / h_{2}=2$:

$$
B_{h}=\frac{2^{2} A_{h / 2}-A_{h}}{2^{2}-1} ; \quad C_{h}=\frac{2^{4} B_{h / 2}-B_{h}}{2^{4}-1}
$$

Expressed in tabular form with order:

$\mathcal{O}\left(h^{2}\right)$	$\mathcal{O}\left(h^{6}\right)$	$\mathcal{O}\left(h^{6}\right)$
A_{h}	$B_{h}=\frac{4 A_{h / 2}-A_{h}}{3}$	$\frac{16 B_{h / 2}-B_{h}}{15}$
$A_{h / 2}$	$B_{h / 2}=\frac{4 A_{h / 4}-A_{h / 2}}{3}$	
$A_{h / 4}$		

Gaussian Quadrature

Specify positions $\left\{x_{i}\right\}$ and weights $\left\{w_{i}\right\}$ that ensure exact integration of all polynomials of $\operatorname{deg} \leq 2 n-1$ with:

$$
\int_{a}^{b} d x p(x)=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

This works because there is a best polynomial of $\operatorname{deg} \leq 2 n-1$ which is very close to $f(x)$ in the $\lim _{n \rightarrow \infty}$.
If given coefficients for the interval $[-1,1]$, they can be transformed to $[a, b]$ by a linear scaling.

LU Factorization

$L U$ factorization of a matrix into a lower triangular and an upper triangular matrix is useful for solving systems of linear equations, inverting matrices, and computing determinants. How the method works is shown by an example:

$$
\begin{aligned}
A & =\left(\begin{array}{lll}
2 & 4 & 0 \\
2 & 6 & 6 \\
1 & 8 & 4
\end{array}\right) \\
L_{1} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 / 2 & 1 & 0 \\
-1 / 2 & 0 & 1
\end{array}\right) \\
L_{1} A & =\left(\begin{array}{lll}
2 & 4 & 0 \\
0 & 2 & 6 \\
0 & 6 & 4
\end{array}\right) \\
L_{2} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -6 / 2 & 1
\end{array}\right) \\
L_{2} L_{1} A & =\left(\begin{array}{lll}
2 & 4 & 0 \\
0 & 2 & 6 \\
0 & 0 & -14
\end{array}\right)=U \\
L_{1}^{-1} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
2 / 2 & 1 & 0 \\
1 / 2 & 0 & 1
\end{array}\right) \\
L_{2}^{-1} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 6 / 2 & 1
\end{array}\right) \\
L=L_{1}^{-1} L_{2}^{-1} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 / 2 & 3 & 1
\end{array}\right) \\
L U & =A
\end{aligned}
$$

Note: each row/column is iteratively determined so this generalizes.

Splines

Splines are piecewise polynomial interpolants. An n-th degree spline is determined by imposing interpolation, and continuity of the up to $n-1$ th derivatives at each interior data point, as well as specifying conditions on the first point. For $n=2$, we find (iteratively):
$S_{i}(x)=a_{i}+b_{1}\left(x-x_{i-1}\right)+c_{i}\left(x-x_{i-1}\right)^{2}$ Where $a_{i}=F\left(x_{i-1}\right), b_{i}=S^{\prime}\left(x_{i-1}\right)$, and $c_{i}=\left(S^{\prime}\left(x_{i}\right)-S^{\prime}\left(x_{i-1}\right)\right) / 2 h$, and:
$S^{\prime}\left(x_{i}\right)=\frac{2}{h}\left(F\left(x_{i}\right)-F\left(x_{i-1}\right)\right)-S^{\prime}\left(x_{i-1}\right)$
This works in matrix form too.

