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THEOREMS

Mean Value Theorem: between two
points of a function at heights f(a) and
f(b), there is at least one point with
slope f'(c) = [f(b) — f(a)]/(b— a).

Extreme Value Theorem: a continuous
function on a bounded interval, has a
non-infinite maximum and a minimum.

Intermediate Value Theorem: between
two points at heights f(a) and f(b),
any continuous function passes through
all intermediate heights.

Taylor’s Theorem, for a €™ function:
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MAcCHINE NUMBERS

IEEE 754 is a standard for machine
numbers. It encodes a sign s, a power
p, and a mantissa m. Numbers are:

x = (—1)52P71923(1 4 m)

Numbers are encoded to finite preci-
sion, which can lead to overflow, under-
flow, and chopping/rounding errors.

Numeric errors may be quantified as
actual, absolute, or relative errors.

Machine epsilon is the largest number
such that 1 4+ € =1, ex. to five digits,
1+ € = 0.10000]|9 x 10, so € = 0.0001.

Subtraction can sometimes lead to a
“catastrophic” loss in significance. Ad-
dition/multiplication/division are nice.

BisecTiON METHOD

Given an interval with a root f(z*)=0,
bisect the interval and see which half
contains the root and update the in-
terval. For continuous functions, if
f(a)f(b) <0, then [a, b] contains a root.

The error, ey = x; —z* is bounded by:
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The bisection method converges with
order v = 1 and rate constant A = 1/2.

NEwWTON’S METHOD

A less stable, but much faster method
of finding roots takes the derivative:
Thtl = Tk — far)
[ (k)
Newton’s method converges with order
« = 2 and rate constant:
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CONVERGENCE ORDER & RATE

There are many rootfinding methods,
but iterative root methods often fulfill:
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Where « is the convergence order and
A is the convergence rate. For conver-

gence we need A < 1, so that \¥ — 0.

Fi1xED POINT CONVERGENCE

Assume z* is a solution of g(z) =
and g(x) is « times continuously dif-
ferentiable for all x near z* for some
a > 2. Furthermore assume ¢'(z*) =
g"(xz*) = ...g®Y(z*) = 0. Then if
xo is chosen sufficiently close to z*, the
iteration zy+1 = g(zx) will have:
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Also, if ¢'(z*) # 0, and |¢'(z*)] < 1,
and z¢ is sufficiently close to z*, then:
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STOPPING CONDITIONS

“Do you want a small residual or the
actual result?” This will determine the
stopping condition you choose. Three
common metrics for stopping are:

error |xg — ¥
residual |f(zk)]
difference |xg41 — 2k

Which of the metrics work for a prob-
lem should be carefully considered.

For the Newton Method, with assump-
tions, a simple bound on the error is:
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<tol = |z — x| < tol

POLYNOMIAL INTERPOLATION

For n points (x;, f;), there is a unique
polynomial of degree < n— 1 which in-
terpolates the points. One method to
find this is Newton divided differences:
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The polynomial is for boxed constants:
p(x) = coter(z—x0)+ca(z—x0)(—21)
For equispaced data, error is bounded:
f(n+1) 1
[g’lﬁﬁ] |f(z) —p(z)| < mw

This can blow up as in Runge’s phe-
nomenon, so Chebyshev spacing and
piecewise interpolation are often used.

VANDERMONDE MATRIX

An efficient way to determine p(z) =
>, a;x" is to solve the matrix equation:
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LAGRANGE POLYNOMIALS

Another rote way to determine p(z) =
St fili(z), is Lagrange Polynomials:
HZ:O,k;éi(x — Tk)
Hk:o,k;éi(xi — )

CHEBYSHEV SPACING

The solution of a minimax problem
gives the Chebyshev spacing which has
the smallest maximal error for p(x).
This spacing is for n points on [0, 1]:
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The error bound is:
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PIECEWISE INTERPOLATION

Interpolating intervals piecewisely of
size h/N, has an error of N~("+1) com-
pared to intervals of size h, as expected.
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NUMERICAL DIFFERENTIATION

The idea is to interpolate a set of points
with a polynomial, and approximate:

f'(@) = p'(2)
Linear interpolation, with f; = f(x;):
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For quadratic, centered, equispaced:
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By Taylor expansion, find the error:
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In terms of M, = max @ (2)/p!:
linear Mih!
quadratic M2h2

With an asymptotic error expansion:
en = cph? + cphPTH 4 L.

It naturally follows that in limp_q:

p = log len|
? |€h/2|

For large h, h?*t! 2 0, and for small
h there may be catastophic cancella-
tion. In fact, the optimal error is at
h = O(e"/P+1) which is seen from:

en < M,,hp+%

NEWTON-COTES INTEGRATION

The Newton-Cotes method integrates
polynomial interpolants to functions:

/abd:c f(fv)%/abdfcp(w)

For a linear interpolant (trapezoid):

b
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For a quadratic interpolant (Simpson):

b
/ dzp(x):h-f0+4§1+f2

For a quartic interpolant:
b

These have associated errors of:
linear —(h3/12) £ (€)
quadratic ~ —(h®/90)f""(€)
quartic —(3h5/80) £ (&)

COMPOSITE INTEGRATION

Composite methods use the relation:
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For composite linear (trapezoid):
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For composite quadratic (Simpson):
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These have associated errors of:
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AITKEN ORDER ESTIMATION

For an integral with asymptotic error
expansion of Ioyact — In, in the limy_q:

p=log (Ih/z_Ih )
*\Inja — Injo

RICHARDSON EXTRAPOLATION

If there exists an asymptotic error ex-

pansion, then through clever addition,

one may increase the order. With two

results and step sizes hy/hy = 2:

B 22Ah/2—Ah. 24Bh/2—Bh
A I

Expressed in tabular form with order:

O(h?)|O(h%) O(h%)
1A, ,—A 168, ,,—B
Ah Bh = h/;, . hl/; :
A, A
Apsa | B = A2nsa—2nsz 2
Apys

(GAUSSIAN QUADRATURE

Specify positions {x;} and weights
{w;} that ensure exact integration of
all polynomials of deg < 2n — 1 with:
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This works because there is a best poly-
nomial of deg < 2n — 1 which is very
close to f(z) in the lim, .

If given coefficients for the interval
[—1,1], they can be transformed to
[a,b] by a linear scaling.

LU FACTORIZATION

LU factorization of a matrix into a
lower triangular and an upper triangu-
lar matrix is useful for solving systems
of linear equations, inverting matrices,
and computing determinants. How the
method works is shown by an example:

2 40
A=[2 6 6
1 8 4
1 00
Li=|-2/2 1 0
-1/2 0 1
2 40
LA=[0 2 6
0 6 4
1 0 0
Ly={0 1 0
0 —6/2 1
2 4 0
LyliA= (0 2 6 |=U
0 0 —14
1 00
Li't=12/2 1 0
1/2 0 1
1 0 0
Ly'=10 1 o0
0 6/2 1
1 00
L=L{'Ly'=(1 1 0
1/2 3 1
LU =A

Note: each row/column is iteratively
determined so this generalizes.

SPLINES

Splines are piecewise polynomial inter-
polants. An n-th degree spline is deter-
mined by imposing interpolation, and
continuity of the up to n — 1th deriva-
tives at each interior data point, as well
as specifying conditions on the first
point. For n = 2, we find (iteratively):

Sl(x) = ai+b1(£ﬂfﬂfi_1)+Ci(1'71'i_1)2
Where a; = F(IEi_l), bl = Sl(l’i_l),
and ¢; = (S'(z;) — S’ (wi—1))/2h, and:

§'(e0) = 3 (F(o)~ Flai 1))~ (1)

This works in matrix form too.
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