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Theorems

Mean Value Theorem: between two
points of a function at heights f(a) and
f(b), there is at least one point with
slope f ′(c) = [f(b)− f(a)]/(b− a).

Extreme Value Theorem: a continuous
function on a bounded interval, has a
non-infinite maximum and a minimum.

Intermediate Value Theorem: between
two points at heights f(a) and f(b),
any continuous function passes through
all intermediate heights.

Taylor’s Theorem, for a C n function:

f(x) =

[
n∑
k=0

f (k)(x0)

k!
(x− x0)k

]

+
f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1

Machine Numbers

IEEE 754 is a standard for machine
numbers. It encodes a sign s, a power
p, and a mantissa m. Numbers are:

x = (−1)s2p−1023(1 + m)

Numbers are encoded to finite preci-
sion, which can lead to overflow, under-
flow, and chopping/rounding errors.

Numeric errors may be quantified as
actual, absolute, or relative errors.

Machine epsilon is the largest number
such that 1 + ε = 1, ex. to five digits,
1 + ε = 0.10000|9̄× 101, so ε = 0.0001.

Subtraction can sometimes lead to a
“catastrophic” loss in significance. Ad-
dition/multiplication/division are nice.

Bisection Method

Given an interval with a root f(x∗)=0,
bisect the interval and see which half
contains the root and update the in-
terval. For continuous functions, if
f(a)f(b)<0, then [a, b] contains a root.

The error, ek = xk−x∗ is bounded by:

|xk − x∗| ≤
|bk − ak|

2
=
|b0 − a0|

2 · 2k
The bisection method converges with
order α = 1 and rate constant λ = 1/2.

Newton’s Method

A less stable, but much faster method
of finding roots takes the derivative:

xk+1 = xk −
f(xk)

f ′(xk)

Newton’s method converges with order
α = 2 and rate constant:

λ =

∣∣∣∣ f ′′(x∗)2f ′(x∗)

∣∣∣∣
Convergence Order&Rate

There are many rootfinding methods,
but iterative root methods often fulfill:

lim
k→∞

|xk+1 − x∗|
|xk − x∗|α

= λ

Where α is the convergence order and
λ is the convergence rate. For conver-
gence we need λ < 1, so that λk → 0.

Fixed Point Convergence

Assume x∗ is a solution of g(x) = x
and g(x) is α times continuously dif-
ferentiable for all x near x∗ for some
α ≥ 2. Furthermore assume g′(x∗) =
g′′(x∗) = . . . g(α−1)(x∗) = 0. Then if
x0 is chosen sufficiently close to x∗, the
iteration xk+1 = g(xk) will have:

lim
k→∞

|xk+1 − x∗|
|xk − x∗|α

=

∣∣∣∣g(α)(x∗)α!

∣∣∣∣ = λ

Also, if g′(x∗) 6= 0, and |g′(x∗)| < 1,
and x0 is sufficiently close to x∗, then:

lim
k→∞

|xk+1 − x∗|
|xk − x∗|1

= |g′(x∗)|

Stopping Conditions

“Do you want a small residual or the
actual result?” This will determine the
stopping condition you choose. Three
common metrics for stopping are:

error |xk − x∗|
residual |f(xk)|
difference |xk+1 − xk|

Which of the metrics work for a prob-
lem should be carefully considered.

For the Newton Method, with assump-
tions, a simple bound on the error is:

|f(xk)|
|f ′(xk)|

< tol =⇒ |xk − x∗| < tol

Polynomial Interpolation

For n points (xi, fi), there is a unique
polynomial of degree ≤ n− 1 which in-
terpolates the points. One method to
find this is Newton divided differences:

x0 f0

x1 f1

x2 f2

f1 − f0
x1 − x0
f2 − f1
x2 − x1

f2−f1
x2−x1

− f1−f0
x1−x0

x2 − x0

The polynomial is for boxed constants:

p(x) = c0+c1(x−x0)+c2(x−x0)(x−x1)

For equispaced data, error is bounded:

max
[x0,xn]

|f(x)− p(x)| ≤ f (n+1)

4(n+ 1)

1

nn+1

This can blow up as in Runge’s phe-
nomenon, so Chebyshev spacing and
piecewise interpolation are often used.

Vandermonde Matrix

An efficient way to determine p(x) =∑
i aix

i is to solve the matrix equation:
1 x0 x20 . . . xn0
1 x1 x21 . . . xn1
...

...
...

. . .
...

1 xn x2n . . . xnn



a0
a1
...
an

=


f0
f1
...
fn


Lagrange Polynomials

Another rote way to determine p(x) =∑n
i=0 fili(x), is Lagrange Polynomials:

li(x) =

∏n
k=0,k 6=i(x− xk)∏n
k=0,k 6=i(xi − xk)

Chebyshev Spacing

The solution of a minimax problem
gives the Chebyshev spacing which has
the smallest maximal error for p(x).
This spacing is for n points on [0, 1]:

xi = cos

(
2i+ 1

2n+ 2
π

)
The error bound is:

max
[x0,xn]

|f(x)− p(x)| ≤ f (n+1)

(n+ 1)!

1

2n

Piecewise Interpolation

Interpolating intervals piecewisely of
size h/N , has an error of N−(n+1) com-
pared to intervals of size h, as expected.
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Numerical Differentiation

The idea is to interpolate a set of points
with a polynomial, and approximate:

f ′(x) ≈ p′(x)

Linear interpolation, with fi = f(xi):

p′(x) =
f1 − f0
x1 − x0

For quadratic, centered, equispaced:

p′(x) ≈ f(x+ h)− f(x− h)

2h
By Taylor expansion, find the error:

f ′(x0)−f(x0 + h)− f(x0)

h
≈ −f

′′(x0)

2!
h

In terms of Mp = max f (p)(x)/p!:

linear M1h
1

quadratic M2h
2

With an asymptotic error expansion:

eh = cph
p + cp+1h

p+1 + . . .

It naturally follows that in limh→0:

p = log2

(
|eh|
|eh/2|

)
For large h, hp+1 6≈ 0, and for small
h there may be catastophic cancella-
tion. In fact, the optimal error is at
h = O(ε1/(p+1)), which is seen from:

eh ≤Mph
p +

ε

h

Newton-Cotes Integration

The Newton-Cotes method integrates
polynomial interpolants to functions:∫ b

a

dx f(x) ≈
∫ b

a

dx p(x)

For a linear interpolant (trapezoid):∫ b

a

dx p(x) = h · fa + fb
2

For a quadratic interpolant (Simpson):∫ b

a

dx p(x) = h · f0 + 4f1 + f2
3

For a quartic interpolant:∫ b

a

dx p(x) = h·3(f0 + 3f1 + 3f2 + f3)

8

These have associated errors of:

linear −(h3/12)f ′′(ξ)

quadratic −(h5/90)f ′′′′(ξ)

quartic −(3h5/80)f ′′′′(ξ)

Composite Integration

Composite methods use the relation:∫ xn

x0

dx f(x) =

n−1∑
i=0

∫ xi+1

xi

dx f(x)

For composite linear (trapezoid):∫ xn

x0

dx f(x) ≈
n−1∑
i=0

h · fi + fi+1

2

For composite quadratic (Simpson):

h

3

n/2∑
i=1

[f(x2i−2) + f(x2i−1) + f(x2i)]

These have associated errors of:

linear −b− a
12

h2f ′′(µ)

quadratic −b− a
180

h4f ′′′′(µ)

Aitken Order Estimation

For an integral with asymptotic error
expansion of Iexact− Ih, in the limh→0:

p = log2

(
Ih/2 − Ih
Ih/4 − Ih/2

)
Richardson Extrapolation

If there exists an asymptotic error ex-
pansion, then through clever addition,
one may increase the order. With two
results and step sizes h1/h2 = 2:

Bh=
22Ah/2−Ah

22 − 1
; Ch=

24Bh/2−Bh
24 − 1

Expressed in tabular form with order:

O(h2) O(h6) O(h6)

Ah Bh =
4Ah/2−Ah

3

16Bh/2−Bh

15

Ah/2 Bh/2 =
4Ah/4−Ah/2

3

Ah/4

Gaussian Quadrature

Specify positions {xi} and weights
{wi} that ensure exact integration of
all polynomials of deg ≤ 2n− 1 with:∫ b

a

dx p(x) =

n∑
i=1

wif(xi)

This works because there is a best poly-
nomial of deg ≤ 2n − 1 which is very
close to f(x) in the limn→∞.
If given coefficients for the interval
[−1, 1], they can be transformed to
[a, b] by a linear scaling.

LU Factorization

LU factorization of a matrix into a
lower triangular and an upper triangu-
lar matrix is useful for solving systems
of linear equations, inverting matrices,
and computing determinants. How the
method works is shown by an example:

A =

2 4 0
2 6 6
1 8 4


L1 =

 1 0 0
−2/2 1 0
−1/2 0 1


L1A =

2 4 0
0 2 6
0 6 4


L2 =

1 0 0
0 1 0
0 −6/2 1


L2L1A =

2 4 0
0 2 6
0 0 −14

 = U

L−11 =

 1 0 0
2/2 1 0
1/2 0 1


L−12 =

1 0 0
0 1 0
0 6/2 1


L = L−11 L−12 =

 1 0 0
1 1 0

1/2 3 1


LU = A

Note: each row/column is iteratively
determined so this generalizes.

Splines

Splines are piecewise polynomial inter-
polants. An n-th degree spline is deter-
mined by imposing interpolation, and
continuity of the up to n− 1th deriva-
tives at each interior data point, as well
as specifying conditions on the first
point. For n = 2, we find (iteratively):

Si(x) = ai+b1(x−xi−1)+ci(x−xi−1)2

Where ai = F (xi−1), bi = S′(xi−1),
and ci = (S′(xi)− S′(xi−1))/2h, and:

S′(xi) =
2

h
(F (xi)−F (xi−1))−S′(xi−1)

This works in matrix form too.
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