Definitions

- A parameterized curve is a function $\vec{\alpha}: I \subseteq \mathbb{R} \mapsto \mathbb{R}^{n}$.
- A curve, $\vec{\alpha}(t)$ is regular iff $\vec{\alpha}^{\prime}(t) \neq \overrightarrow{0}$ for all $t \in I$.
- A smooth function, or \mathscr{C}^{∞} function, is a function whose derivatives are continuous at all orders.
- Two curves $\vec{\alpha}$ and $\vec{\beta}$ are parameterization equivalent iff there exists a smooth invertible function s where $\vec{\alpha}(t)=\vec{\beta}(s(t))$.
- A curve $\vec{\alpha}(t)$ is an arclength parameterization iff $\left\|\vec{\alpha}^{\prime}(t)\right\|=1 \forall t$. This is also called a unit-speed curve and is indicated by $\vec{\alpha}(s)$.
- Two curves are congruent iff they differ by a rotation and a translation.

Elementary Relations

The dot product and cross product and their geometric interpretations are assumed to be familiar. Derivatives are:

$$
\begin{aligned}
\frac{d}{d t}(\vec{r} \cdot \vec{s}) & =\frac{d \vec{r}}{d t} \cdot \vec{s}+\vec{r} \cdot \frac{d \vec{s}}{d t} \\
\frac{d}{d t}(\vec{r} \times \vec{s}) & =\frac{d \vec{r}}{d t} \times \vec{s}+\vec{r} \times \frac{d \vec{s}}{d t} .
\end{aligned}
$$

The angle between vectors arises in the dot product (orthogonal if $\vec{u} \cdot \vec{v}=0$): $\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos (\theta)$
Point-normal equation for a plane:
$n_{x}\left(x-p_{x}\right)+n_{y}\left(y-p_{y}\right)+n_{z}\left(z-p_{z}\right)=0$ The derivative of a curve is as expected: if $\vec{\alpha}(t)=\left(\alpha_{x}(t), \alpha_{y}(t), \alpha_{z}(t)\right)$, then $\vec{\alpha}^{\prime}(t)=\left(\alpha_{x}^{\prime}(t), \alpha_{y}^{\prime}(t), \alpha_{z}^{\prime}(t)\right)$.
The magnitude of a curve at time t is
$\|\vec{\alpha}(t)\|=\sqrt{\alpha_{x}^{2}(t)+\alpha_{y}^{2}(t)+\alpha_{z}^{2}(t)}$
The equation of the tangent line \mathcal{T} to a curve at $\vec{\alpha}\left(t_{0}\right)$ is $\overrightarrow{\mathcal{T}}(u)=\vec{\alpha}\left(t_{0}\right)+u \vec{\alpha}^{\prime}\left(t_{0}\right)$ with $\overrightarrow{\mathcal{T}}$ is parameterized by $u \in J \subseteq \mathbb{R}$. The arclength function is:

$$
s\left(t, t_{0}\right)=\int_{t_{0}}^{t} d u\left\|\vec{\alpha}^{\prime}(u)\right\|
$$

Foundational Theorems

Thm. If $\vec{\alpha}$ and $\vec{\beta}$ are parameterization equivalent, then the image of $\vec{\alpha}$ and the image of $\vec{\beta}$ are equal.
Thm. If the arclength function $s(t, 0)$ is smooth and invertible with smooth inverse $t:=s^{-1}(s(t, 0))$, then $\vec{\beta}(s):=$ $\vec{\alpha}(t(s))$ is parameterization equivalent to $\vec{\alpha}(t)$ and $\vec{\beta}(s)$ unit speed.
Thm. If $\vec{\alpha}:[a, b] \rightarrow \mathbb{R}^{n}$ is a smooth, regular curve, then $\vec{\alpha}$ can be reparameterized with respect to arclength.
Thm. If $\|\vec{v}\|=$ const, then $\vec{v}(t) \perp \vec{v}^{\prime}(t)$.

Frenet-Serret Apparatus

For any smooth regular curve in \mathbb{R}^{3}, we have the unit tangent, normal, and binormal which form an orthonormal basis for \mathbb{R}^{3}, the Frenet frame:
$\vec{T}(t)=\frac{\vec{\alpha}^{\prime}(t)}{\left\|\vec{\alpha}^{\prime}(t)\right\|}$
$\vec{N}(t)=\frac{\overrightarrow{T^{\prime}}(t)}{\left\|\overrightarrow{T^{\prime}}(t)\right\|}=\frac{\left(\vec{\alpha}^{\prime}(t) \times \vec{\alpha}^{\prime \prime}(t)\right) \times \vec{\alpha}^{\prime}(t)}{\left\|\vec{\alpha}^{\prime}(t) \times \vec{\alpha}^{\prime \prime}(t)\right\|\left\|\vec{\alpha}^{\prime}(t)\right\|}$
$\vec{B}(t)=\vec{T}(t) \times \vec{N}(t)=\frac{\vec{\alpha}^{\prime}(t) \times \vec{\alpha}^{\prime \prime}(t)}{\left\|\vec{\alpha}^{\prime}(t) \times \vec{\alpha}^{\prime \prime}(t)\right\|}$
and the curvature and torsion:

$$
\begin{aligned}
& \kappa(t)=\frac{\left\|\vec{T}^{\prime}(t)\right\|}{\left\|\vec{\alpha}^{\prime}(t)\right\|}=\frac{\left\|\vec{\alpha}^{\prime}(t) \times \vec{\alpha}^{\prime \prime}(t)\right\|}{\left\|\vec{\alpha}^{\prime}(t)\right\|^{3}} \\
& \tau(t)=\frac{\left(\vec{\alpha}^{\prime}(t) \times \vec{\alpha}^{\prime \prime}(t)\right) \cdot \vec{\alpha}^{\prime \prime \prime}(t)}{\left\|\vec{\alpha}^{\prime}(t) \times \vec{\alpha}^{\prime \prime}(t)\right\|^{2}}
\end{aligned}
$$

The Frenet equations are:

$$
\left(\begin{array}{l}
\overrightarrow{\vec{T}^{\prime}} \\
\vec{N}^{\prime} \\
\vec{B}^{\prime}
\end{array}\right)=\left\|\vec{\alpha}^{\prime}\right\|\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{l}
\vec{T} \\
\vec{N} \\
\vec{B}
\end{array}\right)
$$

These expressions simplify when the curve is arclength parameterized:

$$
\begin{aligned}
\vec{T}(s) & =\vec{\alpha}^{\prime}(s) \\
\vec{N}(s) & =\frac{\vec{\alpha}^{\prime \prime}(s)}{\left\|\vec{\alpha}^{\prime \prime}(s)\right\|} \\
\vec{B}(s) & =\vec{T}(s) \times \vec{N}(s) \\
\kappa(s) & =\left\|\vec{\alpha}^{\prime \prime}(s)\right\| \\
\tau(s) & =\vec{B}(s) \cdot \vec{N}^{\prime}(s)
\end{aligned}
$$

and the Frenet equations are the same, but with $\left\|\vec{\alpha}^{\prime}\right\|=1$.

Osculating Planes/Circles

Three planes are defined as follows:

Name of plane	Spanned by
Osculating plane	\vec{T} and \vec{N}
Rectifying plane	\vec{T} and \vec{B}
Normal plane	\vec{N} and \vec{B}

Def. The osculating circle is the circle with radius $1 / \kappa\left(s_{0}\right)$ centered at $\vec{\beta}\left(s_{0}\right)=\vec{\alpha}\left(s_{0}\right)+\vec{N}\left(s_{0}\right) / \kappa\left(s_{0}\right)$. This is the best fit circle to $\vec{\alpha}(s)$ at $\vec{\alpha}\left(s_{0}\right)$.

Lines Through Points

Thm. If all the normal lines to $\vec{\alpha}(s)$ pass through a single point, then $\vec{\alpha}$ has constant curvature and zero torsion. Thm. If all tangent lines to $\vec{\alpha}(s)$ pass through a single point, then $\vec{\alpha}$ is a line. Thm. If all osculating planes of $\vec{\alpha}(s)$ pass through a single point, then the curve is planar.

Lines

Def. $\vec{\alpha}(s)$ is a line iff there exist constant vectors \vec{p} and \vec{T} such that $\vec{\alpha}(s)=$ $\vec{p}+s \vec{T}$ for all s.
Thm. If $\vec{\alpha}^{\prime \prime}(t)=\overrightarrow{0}$ for all $t \in I$, then $\vec{\alpha}(t)$ is a line. Equivalently, $\vec{\alpha}(t)$ is a line iff $\kappa(t) \equiv 0$.

Planar Curves

Def. $\vec{\alpha}(s)$ is a planar curve iff there exist constant vectors \vec{n} and \vec{p} such that $(\vec{\alpha}(s)-\vec{p}) \cdot \vec{n}=0$ for all s.
Thm. The following are equivalent for a unit-speed curve $\vec{\alpha}(s)$ with $\kappa(s)>0$:

1. $\vec{\alpha}(s)$ is a planar curve
2. $\vec{B}(s)$ is a constant vector
3. $\tau(s) \equiv 0$

Circles

Def. $\vec{\alpha}(s)$ is part of a circle iff there exists a constant vector \vec{p} and a constant scalar r such that $\|\vec{\alpha}(s)-\vec{p}\|=r$ and $\vec{\alpha}(s)$ is a planar curve.
Thm. For a unit-speed curve $\vec{\alpha}(s)$ with $\kappa(s)>0, \vec{\alpha}(s)$ is a part of a circle iff $\kappa(s)$ is a constant and $\tau(s) \equiv 0$.

Generalized Helixes

Def. $\vec{\alpha}(s)$ is a generalized helix iff there exists a constant unit vector \vec{A} and a constant scalar θ such that $\vec{T}(s)$. $\vec{A}=\cos (\theta)$ for all s.
Thm. For a unit-speed curve $\vec{\alpha}(s)$ with $\kappa(s)>0, \vec{\alpha}(s)$ is a generalized iff $\tau(s) / \kappa(s)$ is a constant.

Involutes and Evolutes

We say $\vec{\beta}$ is an involute of $\vec{\alpha}$ and $\vec{\alpha}$ is an evolute of $\vec{\beta}$ if for each $t \in I$ we have: $\vec{\beta}(t)$ lies on the tangent line to $\vec{\alpha}$ at $\vec{\alpha}(t)$ and $\vec{\alpha}^{\prime}(t)$ is orthogonal to $\vec{\beta}^{\prime}(t)$. Thm. $\vec{\beta}(s)$ is involute of $\vec{\alpha}(s)$ iff $\vec{\beta}(s)=$ $\vec{\alpha}(s)+(c-s) \vec{T}(s)$ for some constant c.

Fundamental Theorems

Fundamental theorem of paths: any smooth, regular, arclength parameterized curve with $\kappa(s)>0$ is completely determined by curvature κ and torsion τ up to initial position and direction. Fundamental theorem of space curves: let $\vec{\alpha}(s)$ and $\vec{\beta}(s)$ be two unit-speed curves with curvature $\kappa_{\alpha}(s)=\kappa_{\beta}(s)$ for all s. Then there exists a translation and a rotation that takes $\vec{\alpha}$ to $\vec{\beta}$.

Surfaces

Def. $\vec{x}: U \subseteq \mathbb{R}^{2} \rightarrow M \subseteq \mathbb{R}^{3}$ is a regular parameterization (of a surface) if \vec{x} is an injective \mathscr{C}^{3} function and $\vec{x}_{u} \times \vec{x}_{v} \neq \overrightarrow{0}$ for all $(u, v) \in U$.
Def. A connected subset $M \subseteq \mathbb{R}^{3}$ is a surface iff each point $p \in M$ has a neighborhood surrounding it that is regularly parameterized.

Parameterized Surfaces

The tangent plane at any point on a regular surface is the plane spanned by \vec{x}_{u} and \vec{x}_{v}, and the unit normal is:

$$
\vec{n}=\frac{\vec{x}_{u} \times \vec{x}_{v}}{\left\|\vec{x}_{u} \times \vec{x}_{v}\right\|}
$$

Surfaces of Revolution

The surface of revolution of $\vec{\alpha}=$ $(0, f(u), g(u))$ about the z-axis is: $\vec{x}(u, v)=(f(u) \cos (v), f(u) \sin (v), g(u))$

Ruled Surfaces

Let $\vec{\alpha}(u)$ and $\vec{\beta}(u)$ be parameterized curves with $\vec{\beta}(u) \neq 0$ for all u. Now define the parameterized surface:

$$
\vec{x}(u, v)=\vec{\alpha}(u)+v \vec{\beta}(u)
$$

this is a v-ruled surface with rulings $\vec{\beta}(u)$ and directrix $\vec{\alpha}(u)$. A similar expression holds for u-ruled surfaces.

First Fundamental Form

The First Fundamental Form is:

$$
I_{P}=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)=\left(\begin{array}{ll}
\vec{x}_{u} \cdot \vec{x}_{u} & \vec{x}_{u} \cdot \vec{x}_{v} \\
\vec{x}_{u} \cdot \vec{x}_{v} & \vec{x}_{v} \cdot \vec{x}_{v}
\end{array}\right)
$$

Thm. if for each $P \in M$ there exists $\vec{x}: U \rightarrow M$ with $\vec{x}\left(u_{0}, v_{0}\right)=P$ and $\vec{x}^{*}: U \rightarrow M^{*}$ with $I_{P}=I_{P}^{*}$, then M and M^{*} are locally isometric.
Def. a surface is conformal if for all $P \in M, E=G$ and $F=0$. Two surfaces are conformal if $I_{P}=\lambda I_{P}^{*}$ for some scalar-valued function $\lambda(u, v)$. The surface area is given by:

$$
\begin{aligned}
A & =\int_{U} d u d v\left\|\vec{x}_{u} \times \vec{x}_{v}\right\| \\
& =\int_{U} d u d v \sqrt{E G-F^{2}}
\end{aligned}
$$

Gauss Map

The Gauss map is $\vec{n}: M \rightarrow \Sigma$, where Σ is the unit sphere. For curves there are tangent, normal, and binormal spherical images $\vec{\alpha} \rightarrow \Sigma$.

Second Fundamental Form

The Second Fundamental Form is: $I I_{P}=\left(\begin{array}{cc}\ell & m \\ m & n\end{array}\right)=\left(\begin{array}{cc}\vec{x}_{u u} \cdot \vec{n} & \vec{x}_{u v} \cdot \vec{n} \\ \vec{x}_{u v} \cdot \vec{n} & \vec{x}_{v v} \cdot \vec{n}\end{array}\right)$ Meusnier's formula, if $\vec{\alpha}^{\prime}(0)=\vec{T}$: $\kappa_{n}=\left(I I_{P} \vec{T}\right) \cdot \vec{T}=\kappa \cos (\phi)=\kappa \vec{N} \cdot \vec{n}$ where ϕ is the angle between the curve normal \vec{N} and the surface normal \vec{n}. Def. \vec{V} is an asymptotic direction at P if $\left(I I_{P} \vec{V}\right) \cdot \vec{V}=0$.
Def. $\vec{\alpha}$ is an asymptotic curve if $\left(I I_{P} \vec{T}\right) \cdot \vec{T}=0$ for all $P \in \vec{\alpha}$.

The Shape Operator

The shape operator in matrix form:

$$
S_{P}=I_{P}^{-1} I I_{P}
$$

the eigenvalues of S are the principal curvatures k_{1} and k_{2}, the eigenvectors are the principal directions at point P. Def. $\vec{\alpha}$ is a line of curvature if its tangent is always a principal direction. Thm. If there exists an asymptotic direction at P, then $k_{1} k_{2} \leq 0$.
Thm. M is a subset of a plane if $S_{P}=$ 0 for all $P \in M$.

Surface Curvature

The Gaussian curvature is:

$$
K=\operatorname{det}\left(S_{P}\right)=k_{1} k_{2}
$$

The mean curvature is:

$$
H=\frac{1}{2} \operatorname{tr}\left(S_{P}\right)=\frac{1}{2}\left(k_{1}+k_{2}\right)
$$

A surface is flat if $K=0$, and a surface is minimal if $H=0$.

Point	Requirement
Umbillic	$k_{1}=k_{2}$
Planar	$k_{1}=k_{2}=0$
Parabolic	$K=0 ;$ non-planar
Elliptic	$K>0$
Hyperbolic	$K<0$

Christoffel Symbols

Let the Christoffel symbols $\Gamma_{i j}^{k}$ be:

$$
\begin{aligned}
\vec{x}_{u u} & =\Gamma_{u u}^{u} \vec{x}_{u}+\Gamma_{u u}^{v} \vec{x}_{v}+\ell \vec{n} \\
\vec{x}_{u v} & =\Gamma_{u v}^{u} \vec{x}_{u}+\Gamma_{u v}^{v} \vec{x}_{v}+\ell \vec{n} \\
\vec{x}_{v v} & =\Gamma_{v v}^{u} \vec{x}_{u}+\Gamma_{v v}^{v} \vec{x}_{v}+\ell \vec{n}
\end{aligned}
$$

In terms of the first-fundamental form:

$$
\begin{aligned}
& \binom{\Gamma_{u u}^{u}}{\Gamma_{u u}^{u}}=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)^{-1}\binom{E_{u} / 2}{F_{u}-E_{v} / 2} \\
& \binom{\Gamma_{u v}^{u}}{\Gamma_{u v}^{v}}=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)^{-1}\binom{E_{v} / 2}{G_{u} / 2} \\
& \binom{\Gamma_{v}^{u}}{\Gamma_{v v}^{v}}=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)^{-1}\binom{F_{v}-G_{u} / 2}{G_{v} / 2}
\end{aligned}
$$

Codazzi \& Gauss Equations

The Codazzi equations are:
$\begin{aligned} \ell_{v}-m_{u} & =\ell \Gamma_{u v}^{u}+m\left(\Gamma_{u v}^{v}-\Gamma_{u u}^{u}\right)-n \Gamma_{u u}^{v} \\ m_{v}-n_{u} & =\ell \Gamma^{u}{ }_{v}^{u}+m\left(\Gamma^{v}{ }_{v}-\Gamma_{u}^{u}\right)-n \Gamma^{v}\end{aligned}$
$m_{v}-n_{u}=\ell \Gamma_{v v}^{u}+m\left(\Gamma_{v v}^{v}-\Gamma_{u v}^{u}\right)-n \Gamma_{u v}^{v}$
The Gauss equations are:
$E K=\left(\Gamma_{u u}^{v}\right)_{v}+\left(\Gamma_{u v}^{v}\right)_{u}+\Gamma_{u u}^{u} \Gamma_{u v}^{v}+\Gamma_{u u}^{v} \Gamma_{v v}^{v}$
$-\Gamma_{u v}^{u} \Gamma_{u u}^{v}-\left(\Gamma_{u v}^{v}\right)^{2}$
$F K=\left(\Gamma_{u v}^{u}\right)_{u}-\left(\Gamma_{u u}^{u}\right)_{v}+\Gamma_{u v}^{v} \Gamma_{u v}^{u}-\Gamma_{u u}^{v} \Gamma_{v v}^{u}$
$F K=\left(\Gamma_{u v}^{v}\right)_{v}-\left(\Gamma_{v v}^{v}\right)_{u}+\Gamma_{u v}^{u} \Gamma_{u v}^{v}-\Gamma_{v v}^{u} \Gamma_{u u}^{v}$
$G K=\left(\Gamma_{v v}^{u}\right)_{u}-\left(\Gamma_{u v}^{u}\right)_{v}+\Gamma_{v v}^{u} \Gamma_{u u}^{u}+\Gamma_{v v}^{v} \Gamma_{u v}^{u}$

$$
-\left(\Gamma_{u v}^{u}\right)^{2}-\Gamma_{u v}^{v} \Gamma_{v v}^{u}
$$

Thm. If two surfaces are locally isometric, their Gaussian curvatures at corresponding points are equal.
Thm. Suppose $M \subset \mathbb{R}^{3}$ is a compact surface. Then there is a point $P \in M$ with $K(P)>0$.
Thm. If M is a smooth, compact surface of constant Gaussian curvature K, then $K>0$ and M must be a sphere of radius $1 / \sqrt{K}$.

Gauss's Theorema Egregium

Thm. The Gaussian curvature is determined by only the (partials of the) first fundamental form I.
We have in general that:

$$
K=\frac{\ell n-m^{2}}{E G-F^{2}}
$$

So, if $F=0$, we see that:
$K=-\frac{1}{2 \sqrt{E G}}\left(\left(\frac{E_{v}}{\sqrt{E G}}\right)_{v}+\left(\frac{G_{u}}{\sqrt{E G}}\right)_{u}\right)$

Fundamental Theorem of Surfaces

Thm. Two surfaces $\vec{x}, \vec{x}^{*}: U \rightarrow \mathbb{R}^{3}$ are congruent iff $I=I^{*}$ and $I I= \pm I^{*}$.
Thm. Given differentiable functions E, F, G, ℓ, m, n with $E>0$ and $E G-$ $F^{2}>0$ that satisfy the Codazzi and Gauss equations, then there exists a parameterized surface $\vec{x}(u, v)$ with the respective I and $I I$.

Geodesics

Def. A geodesic is a curve, $\vec{\alpha}(t)=$ $\vec{x}(u(t), v(t))$ on M that satisfies:
$u^{\prime \prime}+\Gamma_{u u}^{u}\left(u^{\prime}\right)^{2}+2 \Gamma_{u v}^{u} u^{\prime} v^{\prime}+\Gamma_{v v}^{u}\left(v^{\prime}\right)^{2}=0$
$v^{\prime \prime}+\Gamma_{u u}^{v}\left(u^{\prime}\right)^{2}+2 \Gamma_{u v}^{v} u^{\prime} v^{\prime}+\Gamma_{v v}^{v}\left(v^{\prime}\right)^{2}=0$

