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DEFINITIONS

e A parameterized curve is a func-
tion @: I C R~ R".

e A curve, d(t) is regular iff &
forallt € I.

e A smooth function, or ¥*° func-
tion, is a function whose derivatives
are continuous at all orders.

e Two curves &@ and j3 are parameter-
ization equivalent iff there exists
a smooth invertible function s where
G(t) = A(s(t)).

e A curve &(t) is an arclength pa-
rameterization iff ||&’(¢)|] = 1 Vt.
This is also called a unit-speed
curve and is indicated by &(s).

e Two curves are congruent iff they
differ by a rotation and a translation.

ELEMENTARY RELATIONS

The dot product and cross product and
their geometric interpretations are as-
sumed to be familiar. Derivatives are:
G =g g

(Z(rx?) ﬂstrrxfli
The angle between vectors arises in the
dot product (orthogonal if @ - 7 = 0):

-5 = |[il][[7]] cos()

Point-normal equation for a plane:
nw(x_pw) +ny(y_py) +nz(2 _pz) =0
The derivative of a curve is as ex-
pected: if @(t) = (au(t), ay(t), as(t)),
then @’ (t) = (a,(t), oy, (1), (1))

The magnitude of a curve at time % is
1G] = y/a2() + a2(t) +a2(t)
The equation of the tangent line 7T to a
curve at @(to) is T (u) = @(to)+ud (to)
with 7 is parameterized by u € J C R.

The arclength function is:

s(t,to) = [, du || (u)|
FOUNDATIONAL THEOREMS

Thm. If & and 5 are parameteriza-
tion equivalent, then the image of &
and the image of E are equal.

Thm. If the arclength function s(¢,0)
is smooth and invertible with smooth
inverse t := s1(s(t,0)), then f((s) :=
a(t(s)) is parameterization equivalent
to @(t) and 3(s) unit speed.

Thm. If & : [a,b] — R™ is a smooth,
regular curve, then & can be reparam-
eterized with respect to arclength.
Thm. If ||]| = const, then ¥(t) L ¥’ ().

() £ 0

FRENET-SERRET APPARATUS

For any smooth regular curve in R3, we
have the unit tangent, normal, and
binormal which form an orthonormal
basis for R3, the Frenet frame:

L@

T = 1@

fo = O @0xa"0)xa't)
Fol - 1@ <@ 00l

B(t)=T(t) x N(t) = _a'(t) xa'(t)

|a”(2) >x a(#)]]

and the cur;vature and torsion:
CIF@I & x &)
= @0 T @R
(@) x @) - @(0)
"0 = @0 < e

The Frenet equations are:

T 0 & 0\ /T
N =l |-« 0 7 N
B 0 —70 B

These expressions simplify when the
curve is arclength parameterized:

T(s) =a'(s)
@’//(S)
[la” ()l

B(s) = T(s) x N(s)

k(s) =1la"(s)l|

7(s) = B(s) - N'(s)
and the Frenet equations are the same,
but with ||&'|] =1
OSCULATING PLANES/CIRCLES

Three planes are defined as follows:

N(s) =

Name of plane ‘ Spanned by
Osculating plane T and N
Rectifying plane T and B
Normal plane N and B

Def. The osculating circle is the
circle with radius 1/k(sg) centered at
B(s0) = a(so) + N(so)/k(sg). This is
the best fit circle to d(s) at @(so).

LINES THROUGH POINTS

Thm. If all the normal lines to &(s)
pass through a single point, then & has
constant curvature and zero torsion.
Thm. If all tangent lines to d(s) pass
through a single point, then & is a line.
Thm. If all osculating planes of a(s)
pass through a single point, then the
curve is planar.

LINES

Def. @(s) is a line iff there exist con-
stant vectors §and T such that @(s) =
4+ sT for all s.
Thm. If @(t) = 0 for all t € I, then
a(t) is a line. Equivalently, &@(t) is a
line iff k(t) = 0.

PrLANAR CURVES

Def. a(s) is a planar curve iff there
exist constant vectors 77 and p'such that
(@(s) —p) -7 =0 for all s.
Thm. The following are equivalent for
a unit-speed curve @(s) with x(s) > 0:

1. d(s) is a planar curve

2. B(s) is a constant vector

3. 7(s)=0

CIRCLES

Def. d(s) is part of a circle iff there
exists a constant vector p and a con-
stant scalar r such that ||d(s) —p]| =r
and d(s) is a planar curve.

Thm. For a unit-speed curve a(s) with
k(s) > 0, a(s) is a part of a circle iff
k(s) is a constant and 7(s) = 0.

GENERALIZED HELIXES

Def. d(s) is a generalized helix iff
there exists a constant unit vector A
and a constant scalar 6 such that T'(s)-
A = cos(6) for all s.

Thm. For a unit-speed curve a(s)
with x(s) > 0, d(s) is a generalized iff
7(8)/k(s) is a constant.

INVOLUTES AND EVOLUTES

We say 5 is an involute of & and & is
an evo_}ute of B if for each t € I we
have: f(t) lies on the tangent line to &
at @(t) and @ (t) is orthogonal to ' (t).
Thm. 5( ) is involute of a(s) iff E( )=
@(s) + (c— s)T(s) for some constant c.

FUNDAMENTAL THEOREMS

Fundamental theorem of paths: any
smooth, regular, arclength parameter-
ized curve with x(s) > 0 is completely
determined by curvature x and torsion
T up to initial position and direction.

Fundamental theorem of space curves:
let @(s) and B(s) be two unit-speed
curves with curvature kq(s) = rg(s)
for all s. Then there exists a transla-
tion and a rotation that takes & to ﬁ_'
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SURFACES

Def. #:U CR2 - M C R3is a
regular parameterization (of a sur-
face) if & is an injective €3 function
and Z, x Z, # 0 for all (u,v) € U.
Def. A connected subset M C R3 is
a surface iff each point p € M has
a neighborhood surrounding it that is
regularly parameterized.

PARAMETERIZED SURFACES

The tangent plane at any point on a
regular surface is the plane spanned by
7, and ¥,, and the unit normal is:

. Ty X Ty
n=r>"2>=7
|| Zu X Zo|
SURFACES OF REVOLUTION

The surface of revolution of @ =
(0, f(u), g(u)) about the z-axis is:
Z(u,v) = (f(u)cos(v), f(u) sin(v), g(u))

RULED SURFACES

Let @(u) and B(u) be parameterized

curves with 3(u) # 0 for all u. Now

define the parameterized surface:
Z(u,v) = ad(u) + v p(u)

this is a v-ruled surface with rulings

B(u) and directrix @(u). A similar ex-

pression holds for u-ruled surfaces.

FIrsT FUNDAMENTAL FORM

The First Fundamental Form is:
Ip— (E F) _ (fufu fu-fv>
F G Ty Ty Ty Ty
Thm. if for each P € M there exists
Z: U — M with #(ugp,v9) = P and
¥+ U — M* with Ip = I}, then M
and M* are locally isometric.
Def. a surface is conformal if for all
Pe M, F=Gand F =0 Two
surfaces are conformal if Ip = AI} for
some scalar-valued function A(u, v).

The surface area is given by:
A= [, dudv ||Z, x Z,||

= [, dudv VEG — F?

GAUSS MAP

The Gauss map is 7 : M — X,
where X is the unit sphere. For curves
there are tangent, normal, and binor-
mal spherical images & — X.

SECOND FUNDAMENTAL FORM

The Second Fundamental Form is:
- (z m) B <:E’ﬁ fﬁ)
IIp = =" - 5 4
m n Typ "M Tyy - 7
Meusnier’s formula, if @ (0) = T*
fin = (IIpT) - T = kcos(¢) = kN - it
where ¢ is the angle between the curve
normal N and the surface normal 7.
Def. V is an asymptotic direction
at P if (IIpV) -V = 0.
Def. & is an asymptotic curve if
(IIpT)-T =0 for all P € .

THE SHAPE OPERATOR

The shape operator in matrix form:
Sp=1Ip"1Ip

the eigenvalues of S are the principal
curvatures k1 and ks, the eigenvectors
are the principal directions at point P.
Def. & is a line of curvature if its
tangent is always a principal direction.
Thm. If there exists an asymptotic di-
rection at P, then kiks < 0.

Thm. M is a subset of a plane if Sp =
0 for all P € M.

SURFACE CURVATURE

The Gaussian curvature is:
K= det(Sp) = klkz
The mean curvature is:
H = %tl‘(Sp) = %(kl + kz)
A surface is flat if K = 0, and a surface
is minimal if H = 0.

Point Requirement
Umbillic kl = k?g

Planar k’l = k‘z =0
Parabolic K = 0; non-planar
Elliptic K>0

Hyperbolic | K <0

CHRISTOFFEL SYMBOLS
Let the Christoffel symbols Ffj be:
Ty = T, T + Ty Ty + 071
Zuw = Uiyp@u + I @0y + 070
Ty = @y + 10,20 + 071

In terms of the first-fundamental form:

()-8 (520
(2)-( o) ()
()=(r o) ("as”)

Cobpazzl & GAUSS EQUATIONS

The Codazzi equations are:

Ly —my, =T +m(Ty, —Tu)—nly,

n. = (LY, +m(TY, —T%,) - nl?,

The Gauss equations are:

EK=(T})o+ To)u +1T0, 0 + T, T8
— I, I, — (T5,)?

FK = (y)u — (Th)e + Do Iy — T, T

my —

FK = (F:}w)v - (ng)u + FZvl—‘ZU - ngFZu

GK = (qu;)u - (FZU)'U + ng)FZu + 0,
- (F;jv)z - F'Zvrgv

Thm. If two surfaces are locally iso-

metric, their Gaussian curvatures at

corresponding points are equal.

Thm. Suppose M C R3 is a compact

surface. Then there is a point P € M

with K(P) > 0.

Thm. If M is a smooth, compact sur-

face of constant Gaussian curvature K,

then K > 0 and M must be a sphere

of radius 1/VK.

GAUSS’S THEOREMA
EGREGIUM

Thm. The Gaussian curvature is de-
termined by only the (partials of the)
first fundamental form 1.
We have in general that:

K— In —m?
EG — F?
So, if F' = 0, we see that:

= sra (i) (Vi)

FUNDAMENTAL THEOREM OF
SURFACES

Thm. Two surfaces Z, * : U — R3 are
congruent iff I = I'* and II = +1IT*.
Thm. Given differentiable functions
E,F,.G,¢{,m,n with E >0 and EG —
F? > 0 that satisfy the Codazzi and
Gauss equations, then there exists a
parameterized surface Z(u,v) with the
respective I and II.

(GEODESICS

Def. A geodesic is a curve, d(t) =
Z(u(t),v(t)) on M that satisfies:

u + T8 (u)? + 2T /v + T (V)2 =0
o T8 (W) 42T 'y + T2, ()2 =0

VU
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