DEFINITIONS

- A parameterized curve is a function α
 α : *I* ⊆ ℝ → ℝⁿ.
- A curve, $\vec{\alpha}(t)$ is **regular** iff $\vec{\alpha}'(t) \neq \vec{0}$ for all $t \in I$.
- A smooth function, or *C*[∞] function, is a function whose derivatives are continuous at all orders.
- Two curves $\vec{\alpha}$ and $\vec{\beta}$ are **parameter**ization equivalent iff there exists a smooth invertible function *s* where $\vec{\alpha}(t) = \vec{\beta}(s(t)).$
- A curve $\vec{\alpha}(t)$ is an arclength parameterization iff $||\vec{\alpha}'(t)|| = 1 \quad \forall t$. This is also called a **unit-speed** curve and is indicated by $\vec{\alpha}(s)$.
- Two curves are **congruent** iff they differ by a rotation and a translation.

ELEMENTARY RELATIONS

The dot product and cross product and their geometric interpretations are assumed to be familiar. Derivatives are: $\frac{d}{dt}(\vec{r}\cdot\vec{s}) = \frac{d\vec{r}}{dt}\cdot\vec{s} + \vec{r}\cdot\frac{d\vec{s}}{dt}$

 $\frac{d}{dt}(\vec{r}\times\vec{s}) = \frac{d\vec{r}}{dt}\times\vec{s} + \vec{r}\times\frac{d\vec{s}}{dt}$ The angle between vectors arises in the dot product (**orthogonal** if $\vec{u}\cdot\vec{v}=0$):

 $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos(\theta)$ Point-normal equation for a plane: $n_x(x-p_x) + n_y(y-p_y) + n_z(z-p_z) = 0$ The derivative of a curve is as expected: if $\vec{\alpha}(t) = (\alpha_x(t), \alpha_y(t), \alpha_z(t))$, then $\vec{\alpha}'(t) = (\alpha'_x(t), \alpha'_y(t), \alpha'_z(t))$. The magnitude of a curve at time t is

 $\begin{aligned} ||\vec{\alpha}(t)|| &= \sqrt{\alpha_x^2(t) + \alpha_y^2(t) + \alpha_z^2(t)} \\ \text{The equation of the tangent line } \vec{\mathcal{T}} \text{ to a} \\ \text{curve at } \vec{\alpha}(t_0) \text{ is } \vec{\mathcal{T}}(u) &= \vec{\alpha}(t_0) + u\vec{\alpha}'(t_0) \\ \text{with } \vec{\mathcal{T}} \text{ is parameterized by } u \in J \subseteq \mathbb{R}. \end{aligned}$ The arclength function is:

$$s(t, t_0) = \int_{t_0}^t du ||\vec{\alpha}'(u)||$$

FOUNDATIONAL THEOREMS

Thm. If $\vec{\alpha}$ and $\vec{\beta}$ are **parameteriza**tion equivalent, then the image of $\vec{\alpha}$ and the image of $\vec{\beta}$ are equal.

Thm. If the arclength function s(t, 0)is smooth and invertible with smooth inverse $t := s^{-1}(s(t, 0))$, then $\vec{\beta}(s) := \vec{\alpha}(t(s))$ is parameterization equivalent to $\vec{\alpha}(t)$ and $\vec{\beta}(s)$ unit speed.

Thm. If $\vec{\alpha} : [a, b] \to \mathbb{R}^n$ is a smooth, regular curve, then $\vec{\alpha}$ can be reparameterized with respect to arclength. Thm. If $||\vec{v}|| = \text{const}$, then $\vec{v}(t) \perp \vec{v}'(t)$.

FRENET-SERRET APPARATUS

For any smooth regular curve in \mathbb{R}^3 , we have the unit **tangent**, **normal**, and **binormal** which form an orthonormal basis for \mathbb{R}^3 , the **Frenet frame**:

$$\begin{split} \vec{T}(t) &= \frac{\vec{\alpha} \cdot (t)}{||\vec{\alpha}'(t)||} \\ \vec{N}(t) &= \frac{\vec{T}'(t)}{||\vec{T}'(t)||} = \frac{(\vec{\alpha}'(t) \times \vec{\alpha}''(t)) \times \vec{\alpha}'(t)}{||\vec{\alpha}'(t) \times \vec{\alpha}''(t)|| \, ||\vec{\alpha}'(t)|} \\ \vec{B}(t) &= \vec{T}(t) \times \vec{N}(t) = \frac{\vec{\alpha}'(t) \times \vec{\alpha}''(t)}{||\vec{\alpha}'(t) \times \vec{\alpha}''(t)||} \\ \text{and the curvature and torsion:} \\ \kappa(t) &= \frac{||\vec{T}'(t)||}{||\vec{\alpha}'(t)||} = \frac{||\vec{\alpha}'(t) \times \vec{\alpha}''(t)||}{||\vec{\alpha}'(t)||^3} \end{split}$$

$$\mathbf{T}(t) = \frac{(\vec{\alpha}'(t) \times \vec{\alpha}''(t)) \cdot \vec{\alpha}'''(t)}{||\vec{\alpha}'(t) \times \vec{\alpha}''(t)||^2}$$

The Frenet equations are:

$$\begin{pmatrix} \vec{T}' \\ \vec{N}' \\ \vec{B}' \end{pmatrix} = ||\vec{\alpha}'|| \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} \vec{T} \\ \vec{N} \\ \vec{B} \end{pmatrix}$$

These expressions simplify when the curve is arclength parameterized:

$$T(s) = \alpha'(s)$$

$$\vec{N}(s) = \frac{\vec{\alpha}''(s)}{||\vec{\alpha}''(s)||}$$

$$\vec{B}(s) = \vec{T}(s) \times \vec{N}(s)$$

$$\kappa(s) = ||\vec{\alpha}''(s)||$$

$$\tau(s) = \vec{B}(s) \cdot \vec{N}'(s)$$

and the Frenet equations are the same, but with $||\vec{\alpha}'|| = 1$.

OSCULATING PLANES/CIRCLES

Three planes are defined as follows:

Name of plane	Spanned by
Osculating plane	\vec{T} and \vec{N}
Rectifying plane	\vec{T} and \vec{B}
Normal plane	\vec{N} and \vec{B}

Def. The osculating circle is the circle with radius $1/\kappa(s_0)$ centered at $\vec{\beta}(s_0) = \vec{\alpha}(s_0) + \vec{N}(s_0)/\kappa(s_0)$. This is the best fit circle to $\vec{\alpha}(s)$ at $\vec{\alpha}(s_0)$.

LINES THROUGH POINTS

Thm. If all the normal lines to $\vec{\alpha}(s)$ pass through a single point, then $\vec{\alpha}$ has constant curvature and zero torsion.

Thm. If all tangent lines to $\vec{\alpha}(s)$ pass through a single point, then $\vec{\alpha}$ is a line. Thm. If all osculating planes of $\vec{\alpha}(s)$ pass through a single point, then the curve is planar.

LINES

Def. $\vec{\alpha}(s)$ is a **line** iff there exist constant vectors \vec{p} and \vec{T} such that $\vec{\alpha}(s) = \vec{p} + s\vec{T}$ for all s.

Thm. If $\vec{\alpha}''(t) = \vec{0}$ for all $t \in I$, then $\vec{\alpha}(t)$ is a line. Equivalently, $\vec{\alpha}(t)$ is a line iff $\kappa(t) \equiv 0$.

PLANAR CURVES

Def. $\vec{\alpha}(s)$ is a **planar curve** iff there exist constant vectors \vec{n} and \vec{p} such that $(\vec{\alpha}(s) - \vec{p}) \cdot \vec{n} = 0$ for all s.

Thm. The following are equivalent for a unit-speed curve $\vec{\alpha}(s)$ with $\kappa(s) > 0$:

- 1. $\vec{\alpha}(s)$ is a planar curve
- 2. $\vec{B}(s)$ is a constant vector
- 3. $\tau(s) \equiv 0$

CIRCLES

Def. $\vec{\alpha}(s)$ is part of a **circle** iff there exists a constant vector \vec{p} and a constant scalar r such that $||\vec{\alpha}(s) - \vec{p}|| = r$ and $\vec{\alpha}(s)$ is a planar curve.

Thm. For a unit-speed curve $\vec{\alpha}(s)$ with $\kappa(s) > 0$, $\vec{\alpha}(s)$ is a part of a circle iff $\kappa(s)$ is a constant and $\tau(s) \equiv 0$.

GENERALIZED HELIXES

Def. $\vec{\alpha}(s)$ is a **generalized helix** iff there exists a constant unit vector \vec{A} and a constant scalar θ such that $\vec{T}(s) \cdot \vec{A} = \cos(\theta)$ for all s.

Thm. For a unit-speed curve $\vec{\alpha}(s)$ with $\kappa(s) > 0$, $\vec{\alpha}(s)$ is a generalized iff $\tau(s)/\kappa(s)$ is a constant.

INVOLUTES AND EVOLUTES

We say $\vec{\beta}$ is an **involute** of $\vec{\alpha}$ and $\vec{\alpha}$ is an **evolute** of $\vec{\beta}$ if for each $t \in I$ we have: $\vec{\beta}(t)$ lies on the tangent line to $\vec{\alpha}$ at $\vec{\alpha}(t)$ and $\vec{\alpha}'(t)$ is orthogonal to $\vec{\beta}'(t)$. Thm. $\vec{\beta}(s)$ is involute of $\vec{\alpha}(s)$ iff $\vec{\beta}(s) =$ $\vec{\alpha}(s) + (c-s)\vec{T}(s)$ for some constant c.

FUNDAMENTAL THEOREMS

Fundamental theorem of paths: any smooth, regular, arclength parameterized curve with $\kappa(s) > 0$ is completely determined by curvature κ and torsion τ up to initial position and direction. Fundamental theorem of space curves: let $\vec{\alpha}(s)$ and $\vec{\beta}(s)$ be two unit-speed curves with curvature $\kappa_{\alpha}(s) = \kappa_{\beta}(s)$ for all s. Then there exists a translation and a rotation that takes $\vec{\alpha}$ to $\vec{\beta}$.

SURFACES

Def. \vec{x} : $U \subseteq \mathbb{R}^2 \to M \subseteq \mathbb{R}^3$ is a regular parameterization (of a surface) if \vec{x} is an injective \mathscr{C}^3 function and $\vec{x}_u \times \vec{x}_v \neq \vec{0}$ for all $(u, v) \in U$. Def. A connected subset $M \subset \mathbb{R}^3$ is a surface iff each point $p \in M$ has a neighborhood surrounding it that is regularly parameterized.

PARAMETERIZED SURFACES

The **tangent plane** at any point on a regular surface is the plane spanned by \vec{x}_u and \vec{x}_v , and the unit normal is:

$$\vec{n} = \frac{\vec{x}_u \times \vec{x}_v}{||\vec{x}_u \times \vec{x}_v||}$$

SURFACES OF REVOLUTION

The surface of revolution of $\vec{\alpha}$ = (0, f(u), g(u)) about the z-axis is: $\vec{x}(u,v) = (f(u)\cos(v), f(u)\sin(v), g(u))$

RULED SURFACES

Let $\vec{\alpha}(u)$ and $\vec{\beta}(u)$ be parameterized curves with $\vec{\beta}(u) \neq 0$ for all u. Now define the parameterized surface:

 $\vec{x}(u,v) = \vec{\alpha}(u) + v \,\vec{\beta}(u)$ this is a *v*-ruled surface with rulings $\beta(u)$ and **directrix** $\vec{\alpha}(u)$. A similar expression holds for *u*-ruled surfaces.

FIRST FUNDAMENTAL FORM

The **First Fundamental Form** is:

$$I_P = \begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} \vec{x}_u \cdot \vec{x}_u & \vec{x}_u \cdot \vec{x}_v \\ \vec{x}_u \cdot \vec{x}_v & \vec{x}_v \cdot \vec{x}_v \end{pmatrix}$$

Thm. if for each $P \in M$ there exists $\vec{x}: U \to M$ with $\vec{x}(u_0, v_0) = P$ and $\vec{x}^*: U \to M^*$ with $I_P = I_P^*$, then Mand M^* are locally isometric.

Def. a surface is **conformal** if for all $P \in M, E = G$ and F = 0. Two surfaces are conformal if $I_P = \lambda I_P^*$ for some scalar-valued function $\lambda(u, v)$. The **surface area** is given by:

$$\begin{aligned} A &= \int_U du dv \ ||\vec{x}_u \times \vec{x}_v|| \\ &= \int_U du dv \ \sqrt{EG - F^2} \end{aligned}$$

Gauss Map

The **Gauss map** is \vec{n} : $M \rightarrow \Sigma$, where Σ is the unit sphere. For curves there are tangent, normal, and binormal spherical images $\vec{\alpha} \to \Sigma$.

SECOND FUNDAMENTAL FORM

The Second Fundamental Form is: $II_P = \begin{pmatrix} \ell & m \\ m & n \end{pmatrix} = \begin{pmatrix} \vec{x}_{uu} \cdot \vec{n} & \vec{x}_{uv} \cdot \vec{n} \\ \vec{x}_{uv} \cdot \vec{n} & \vec{x}_{vv} \cdot \vec{n} \end{pmatrix}$ Meusnier's formula, if $\vec{\alpha}'(0) = \vec{T}$: $\kappa_n = (II_P \vec{T}) \cdot \vec{T} = \kappa \cos(\phi) = \kappa \vec{N} \cdot \vec{n}$ where ϕ is the angle between the curve normal \vec{N} and the surface normal \vec{n} . Def. \vec{V} is an asymptotic direction at P if $(I_P \vec{V}) \cdot \vec{V} = 0.$ Def. $\vec{\alpha}$ is an **asymptotic curve** if $(II_P \vec{T}) \cdot \vec{T} = 0$ for all $P \in \vec{\alpha}$.

The Shape Operator

The **shape operator** in matrix form: $S_P = I_P^{-1} I I_P$

the eigenvalues of \bar{S} are the principal curvatures k_1 and k_2 , the eigenvectors are the principal directions at point P. Def. $\vec{\alpha}$ is a **line of curvature** if its tangent is always a principal direction. Thm. If there exists an asymptotic direction at P, then $k_1k_2 \leq 0$. Thm. *M* is a subset of a plane if $S_P =$ 0 for all $P \in M$.

SURFACE CURVATURE

The Gaussian curvature is: $K = \det(S_P) = k_1 k_2$

The mean curvature is:

 $H = \frac{1}{2} \operatorname{tr}(S_P) = \frac{1}{2} (k_1 + k_2)$

A surface is **flat** if K = 0, and a surface is **minimal** if H = 0.

Point	Requirement
Umbillic	$k_1 = k_2$
Planar	$k_1 = k_2 = 0$
Parabolic	K = 0; non-planar
Elliptic	K > 0
Hyperbolic	K < 0

CHRISTOFFEL SYMBOLS

Let the **Christoffel symbols**
$$\Gamma_{ij}^k$$
 be:

$$\vec{x}_{uu} = \Gamma^u_{uu} \vec{x}_u + \Gamma^v_{uu} \vec{x}_v + \ell \vec{n}$$
$$\vec{x}_{uv} = \Gamma^u_{uv} \vec{x}_u + \Gamma^v_{uv} \vec{x}_v + \ell \vec{n}$$
$$\vec{x}_{vv} = \Gamma^u_{vv} \vec{x}_u + \Gamma^v_{vv} \vec{x}_v + \ell \vec{n}$$

In terms of the first-fundamental form:

$$\begin{pmatrix} \Gamma_{uu}^{u} \\ \Gamma_{uu}^{v} \end{pmatrix} = \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} E_{u}/2 \\ F_{u} - E_{v}/2 \end{pmatrix}$$

$$\begin{pmatrix} \Gamma_{uv}^{u} \\ \Gamma_{uv}^{v} \end{pmatrix} = \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} E_{v}/2 \\ G_{u}/2 \end{pmatrix}$$

$$\begin{pmatrix} \Gamma_{vv}^{u} \\ \Gamma_{vv}^{v} \end{pmatrix} = \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} F_{v} - G_{u}/2 \\ G_{v}/2 \end{pmatrix}$$

Codazzi & Gauss Equations

The Codazzi equations are:

 $\ell_v - m_u = \ell \Gamma_{uv}^u + m(\Gamma_{uv}^v - \Gamma_{uu}^u) - n \Gamma_{uu}^v$ $m_v - n_u = \ell \Gamma_{vv}^u + m(\Gamma_{vv}^v - \Gamma_{uv}^u) - n \Gamma_{vv}^v$

The Gauss equations are:

$$EK = (\Gamma_{uu}^v)_v + (\Gamma_{uv}^v)_u + \Gamma_{uu}^u \Gamma_{uv}^v + \Gamma_{uu}^v \Gamma_{vv}^v - \Gamma_{uv}^u \Gamma_{uv}^v - (\Gamma_{uv}^v)^2$$

 $FK = (\Gamma_{uv}^u)_u - (\Gamma_{uu}^u)_v + \Gamma_{uv}^v \Gamma_{uv}^u - \Gamma_{uu}^v \Gamma_{vv}^u$ $FK = (\Gamma_{uv}^v)_v - (\Gamma_{vv}^v)_u + \Gamma_{uv}^u \Gamma_{uv}^v - \Gamma_{vv}^u \Gamma_{uu}^v$ $GK = (\Gamma^u_{vv})_u - (\Gamma^u_{uv})_v + \Gamma^u_{vv}\Gamma^u_{uu} + \Gamma^v_{vv}\Gamma^u_{uv}$ $-(\Gamma^u_{uv})^2 - \Gamma^v_{uv}\Gamma^u_{vv}$

Thm. If two surfaces are locally isometric, their Gaussian curvatures at corresponding points are equal.

Thm. Suppose $M \subset \mathbb{R}^3$ is a compact surface. Then there is a point $P \in M$ with K(P) > 0.

Thm. If M is a smooth, compact surface of constant Gaussian curvature K, then K > 0 and M must be a sphere of radius $1/\sqrt{K}$.

Gauss's Theorema EGREGIUM

Thm. The Gaussian curvature is determined by only the (partials of the) first fundamental form I.

We have in general that:

1

$$K = \frac{\ell n - m^2}{EG - F^2}$$

So, if $F = 0$, we see that:
$$K = -\frac{1}{2\sqrt{EG}} \left(\left(\frac{E_v}{\sqrt{EG}} \right)_v + \left(\frac{G_u}{\sqrt{EG}} \right)_u \right)$$

FUNDAMENTAL THEOREM OF SURFACES

Thm. Two surfaces $\vec{x}, \vec{x}^* : U \to \mathbb{R}^3$ are congruent iff $I = I^*$ and $II = \pm II^*$. Thm. Given differentiable functions E, F, G, ℓ, m, n with E > 0 and EG - $F^2 > 0$ that satisfy the Codazzi and Gauss equations, then there exists a parameterized surface $\vec{x}(u, v)$ with the respective I and II.

GEODESICS

Def. A geodesic is a curve, $\vec{\alpha}(t) =$ $\vec{x}(u(t), v(t))$ on M that satisfies:

$$u'' + \Gamma_{uu}^{u}(u')^{2} + 2\Gamma_{uv}^{u}u'v' + \Gamma_{vv}^{u}(v')^{2} = 0$$

$$v'' + \Gamma_{uu}^{v}(u')^{2} + 2\Gamma_{uv}^{v}u'v' + \Gamma_{vv}^{v}(v')^{2} = 0$$

Spenser Talkington \triangleleft spenser.science \triangleright Winter 2021