
Spenser Talkington, UCLA

Method for efficient simulation of driven quantum information systems

Spenser Talkington, University of California, Los Angeles (UCLA)

The advent of computers has revolution-

ized the way we conduct our lives. Com-

puters help us to solve problems and per-

form tasks quickly and efficiently. They

do this by translating commands into bi-

nary logic. Whether we need to save a

document, download an image, or crunch

numbers, all these tasks are transformed

through software into an equivalent series of

binary arithmetical and logical operations.

This binary logic is particularly efficient

for tasks like multiplying integers, but is very

inefficient for other tasks like factoring inte-

gers. Because of this inefficiency, informa-

tion, such as online credit card transactions,

can be protected with encryption. In encryp-

tion, data is scrambled in accordance with

a large integer, and unscrambling requires

factoring that integer.

While this method of encryption protects

scrambled information from binary comput-

ers, it does not protect it from large quan-

tum computers. This is because quantum

computers are based on a different logical

system where factoring integers is easy [1].

Quantum computers also provide a method

to realize a new, unbreakable encryption.

In quantum computing, information is

stored in qubits, where information is the su-

perposition of two obervable states which

collapses into one state when measured:

|ψ〉 = c0|0〉+ c1|1〉 ⇒

{
|0〉 with |c0|2 chance
|1〉 with |c1|2 chance

No one has yet created a quantum com-

puter that is large enough to threaten clas-

sical encryption. One key to building such

a large quantum computer is understanding

how information that is stored in real qubits

evolves with time. In general this is com-

putationally expensive, and requires solving

the Schrödinger Equation numerically:

i~
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉

Solid state quantum dot qubits are par-

ticularly appealing to use in a quantum com-

puter because they leverage existing mate-

rials science technologies, and should be

more easily scalable to create large quan-

tum computers than other types of qubits [2].

Yet, the parameter spaces of solid state

qubits are usually very large and this makes

their simulation challenging. For example,

in a charge-based quantum dot qubit in sil-

icon, even after discarding the spin and lat-

tice degrees of freedom, there are six val-

ley states for each quantum dot [2]. Con-

sidering the lowest two of these states turns

simulation of a qubit into that of a four-state

system with ten degrees of freedom.

In the field of quantum information, these

simulations have traditionally been com-

pleted by numerically solving the von Neu-

mann Equation for density matrices (equiv-

alent to the Schrödinger Equation). While

density matrix methods are extensible to

systems with relaxation and coupling to en-

vironment, they are so slow that:

tsimulation ∼ texperiment

This is acceptable if one wants to explain

the results of an experiment where the rele-

vant parameters are known and have been

measured. On the contrary, density matrix

evolution is not very useful if we want to:
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• Predict the results of an experiment

• Explain unexpected experimental re-

sults where the relevant physical pa-

rameters are unknown

• Identify the structures and parameters

best-suited to realizing robust qubits

To address the problem of quickly simu-

lating real qubit systems, I considered sim-

ulating qubits in the limit of short times, fol-

lowing discussions with graduate students

Nicholas Penthorn, John Rooney, and Tim

Wilson, and with the guidance of Professor

HongWen Jiang.

For short times, energy is conserved in

the system (approximating the system as

isolated) and particle number is conserved

(approximating state relaxation as negligi-

ble). If in addition, one assumes that Hamil-

tonians at different times commute1, then

one can evolve |ψ〉 with a unitary time-

evolution operator U , where U †U = 1:

|ψ(t)〉 = U (t)|ψ(0)〉

For a HamiltonianH(t), the energy basis
is the set of eigenvectors {|aj〉} correspond-
ing to eigenvalues {Ej}, as determined by

diagonalizing H. Using this basis, the time

evolution of state |ψ〉 for small times ∆t is:

|ψ(t+∆t)〉 =
∑

j
e−iEj∆t/~|aj〉〈aj|ψ(t)〉

This generalizes to finite times by letting:

U (t) ≈
N∏

n=1

dim∑
j=1

e−iE
(n)
j (tn−tn−1)/~|a(n)j 〉〈a(n)j |

Where the product is matrix multiplication,

and {E(n)
j }/{|a(n)j 〉} are the corresponding

eigenvalues/vectors of H(tn) for some well-

chosen list of times {tn}.2

Simulation Method for Trapezoidal Driving

(1) Declare initial state and driving

(2) Compute rise and fall unitaries

(3) For each specified readout time

(a) Compute plateau unitary

(b) Evolve state

(c) Readout state

I identified three methods for choosing

lists of times {tn} for experimental time-

dependent drivings of H(t) that ensure fast

and accurate computations:

1. Evaluate constant driving in one step

2. Extend previous computations

3. Store unitaries for repeated drivings

For example, one common manipulation

of a qubit is with “trapezoidal driving”, where

one state starts with an energy much lower

than the other state for encoding, rises lin-

early, plateaus at a new energy splitting for

interference, and then falls linearly to return

to the initial splitting for readout. This evo-

lution can be simulated efficiently using the

methods I have developed by following the

schematic above.

I then computationally implemented this

“optimized unitary” evolution method, and

compared the accuracy of its results against

the corresponding density matrix method

implemented in the popular quantum sim-

ulation software QuTiP [4], for three realis-

tic qubit systems with time-dependent driv-

ing [5,6,7]. I found that the optimized uni-

tary method found the same results as the

QuTiP method to within 2%, see Fig. 1.

1Which is experimentally justified as on-site potentials vary but tunnelings remain constant, see [8].
2The times {tn} are ‘well-chosen’ if the approximation of U is ‘close,’ and the computation is ‘fast.’
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Comparison of Numerical Simulation Results
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FIG. 1. Images of the time evolution of a quantum dot

qubit driven by a trapezoidal pulse using the Hamil-

tonian from Shi, et al. [5]. The optimized unitary

method is 395 times faster than the QuTiP method.

(a) Density matrix methods using QuTiP took 5.92 hr

to determine this image. (b) The optimized unitary

method took 54 sec to determine this image.

In addition, I compared the duration

of the simulation in the optimized unitary

method with the QuTiP method and found

that the new method was over two order of

magnitude faster for all images, see Fig. 2.

These results indicate that for short

times, unitary evolution with optimization for

experimental driving is a way to quickly sim-

ulate real qubit systems:

tsimulation << texperiment
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FIG. 2. Computational times for determining images

of the time evolution of a quantum dot qubit driven

by a trapezoidal pulse using the Hamiltonian from

Schoenfield, et al. [6]. For 100 by 100 images, the

optimized unitary methods for a trapezoidal driving

pulse is 732 times faster than the QuTiP method.

With these new simulation techniques,

it is now possible to explore the parameter

spaces of real qubits to explain experimen-

tal results more quickly and to predict the

structures and parameters most favorable

to realizing robust qubits.

This in turn makes developing the large

quantum computers capable of factoring

large numbers and breaking classical en-

cryption a step closer to realization.

I have submitted a paper describing

these methods to Physical Review B,

posted it on arXiv [8], and have presented

the results at theAPS FarWest Conference.
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