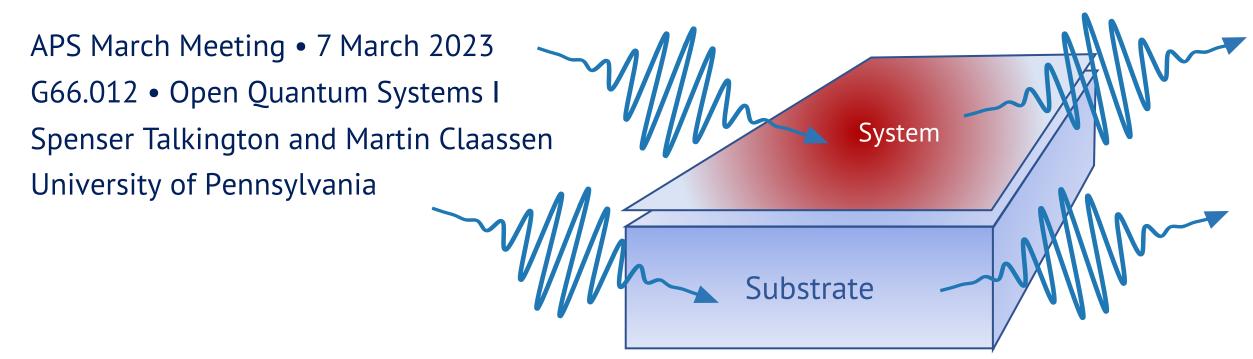


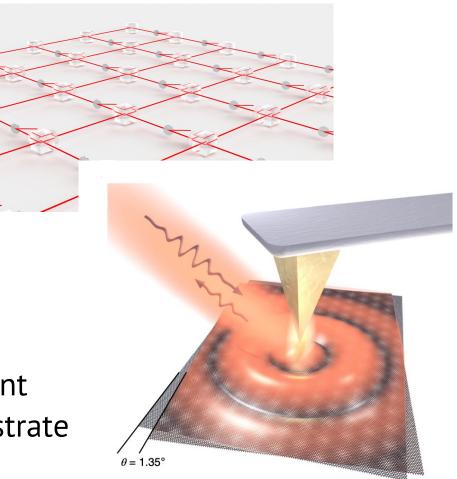
Linear Response Theory for Fermionic Lindbladian Systems



Spenser Talkington and Martin Claassen

Open Fermionic Systems

- Generic features
 - Dissipation and decoherence
 - Exceptional points
 - Non-equilibrium steady states
- Open Bosonic systems
 - Gain and loss in photonic crystals
 - Non-reciprocal transport in BECs
- Open Fermionic systems
 - Qubits decohering due to an environment
 - Quantum materials hybridized by a substrate



Nat. Phys. 17, 1161 (2021)

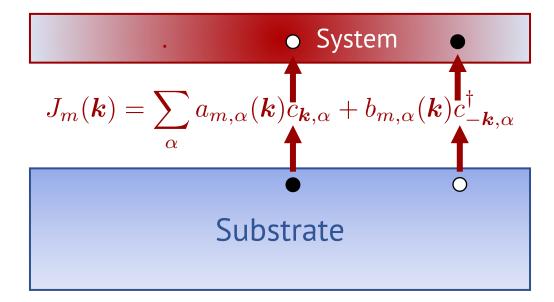
Lindblad Master Equation

• Time evolution in the limit of continuous measurement by a memoryless bath $i\dot{\rho}=\mathcal{L}[\rho]$

$$i\dot{\rho} = (\mathcal{L}^{\text{coh.}} + \mathcal{L}^{\text{n.h.}} + \mathcal{L}^{\text{jump}})[\rho]$$

• Expressed as

$$\mathcal{L}^{\text{coh.}}[\rho] = [H, \rho]$$
$$\mathcal{L}^{\text{n.h.}}[\rho] = -i\frac{\Gamma}{2}\sum_{m} \{J_{m}^{\dagger}J_{m}, \rho\}$$
$$\mathcal{L}^{\text{jump}}[\rho] = i\frac{\Gamma}{2}\sum_{m} 2J_{m}\rho J_{m}^{\dagger}$$



Jump operators linear in fermions ensure the action is quadratic. J_m tunnels in a superposition of particles and holes in bands α .

Spenser Talkington and Martin Claassen

Single Particle Lindbladian

- We want the normal modes of $\mathcal L$ for a system quadratic in fermions
- Express in terms of superfermions $oldsymbol{\psi}^+,oldsymbol{\psi}^-$ on the Keldysh contour

• With
$$\mathcal{L}=ar{\Psi}[L_{
m coh}-iL_{
m dis}]\Psi$$
 for $\Psi=(\psi^+,ar{\psi}^-,ar{\psi}^+,\psi^-)$

$$L_{\rm coh} - iL_{\rm dis} = \begin{pmatrix} H & 0 & 0 & 0 \\ 0 & H & 0 & 0 \\ 0 & 0 & -H^{\top} & 0 \\ 0 & 0 & 0 & -H^{\top} \end{pmatrix} - i\frac{\Gamma}{2} \begin{pmatrix} A - B & -2B & C - C^{\top} & 2C^{\top} \\ -2A & B - A & -2C & C - C^{\top} \\ -2A & B - A & -2C & C - C^{\top} \\ C^{\dagger} - C^* & -2C^* & B^{\top} - A^{\top} & 2A^{\top} \\ C^{\dagger} - C^* & C^{\dagger} - C^* & 2B^{\top} & A^{\top} - B^{\top} \end{pmatrix}$$

ST and MC PRB **106**, 161109 (2022): generalization of Prosen's "third quantization" New J. Phys. **10**, 043026 (2008)

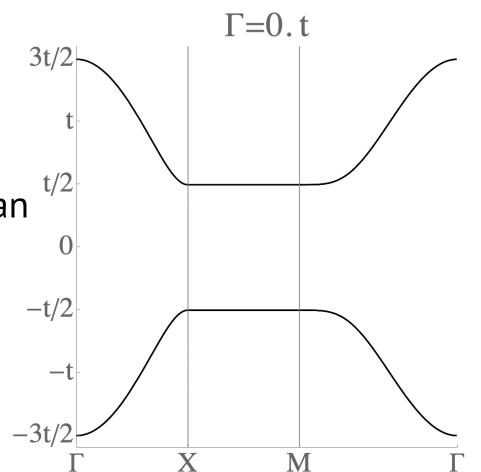
Spenser Talkington and Martin Claassen

Dissipation Induced Flat Bands

- QWZ model of a 2D Chern insulator
 - Couple to a superconducting substrate

$$J_n = c_{\boldsymbol{k},n} + c_{-\boldsymbol{k},n}^{\dagger}$$

- Find long-lived isolated flat bands
- Our previous work with the SP Lindbladian
 - Long lived flat bands form in the dark space of the dissipation operator
 - Derived symmetry-based conditions for the existence of long-lived flat bands
 - PRB **106**, 161109 (2022)



What's the Response?

- System to perturbation
- System to perturbation and substrate
- System to perturbation and substrate to perturbation
- Response isn't just to H^{NH}, but also the substrate (integrated out to give jumps J_m)

System

Substrate

Linear Response Theory

• Kubo formula for equilibrium

$$\langle O(t) \rangle = \langle O \rangle_0 + i \int_0^t d\bar{t} \, \langle [H'(\bar{t}), O(t)] \rangle_0$$

• Kubo formula for the steady state of an open quantum system

$$\langle O(t) \rangle = \langle O \rangle_{ss} + i \int_0^t d\bar{t} \ \langle \mathcal{L}'[O(t)](\bar{t}) \rangle_{ss}$$

$$t = -\infty$$

$$t = 0$$

$$t = \infty$$

$$\rho_0 \qquad \rho_{ss}$$

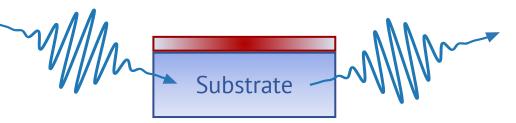
- The response of ho_{ss} is generically very different from that of ho_0
- Time evolution changes from $\partial_t O = -i[H', O]$ to $\partial_t O = -i\mathcal{L}'[O]$

6

What is \mathcal{L}' ?

- Before diagonalization, the Lindbladian master equation is system operators $\dot{\rho}(t) = -i[H_{sys}, \rho(t)] + \sum_{i,j} \Gamma_{ij}(s_j\rho(t)s_i^{\dagger} - s_i^{\dagger}s_j\rho(t)) + \Gamma_{ji}^*(s_i\rho(t)s_j^{\dagger} - \rho(t)s_j^{\dagger}s_i)$
- A generic perturbation changes both ρ and Γ_{ij} , but for simplicity we only show the result of changing Γ_{ij} . We have $\Gamma_{ij} \mapsto \Gamma_{ij} + \Gamma'_{ij}$ with

- For light, $H'(t) = j_{\mu}A^{\mu}(t)$
- Effects of H' on H_{sys} are as usual



Lindblad-Keldysh Green's Functions

- Now we want the (anti)-commutators of Fermions
- These will become Green's functions
 - In equilibrium: G^R and G^A
 - Out of equilibrium: G^R, G^A and a correlation Green's function G^K
- Obtained from the SP Lindbladian via a (Larkin-Ovchinnikov) rotation and a matrix inversion
- For the particle-number conserving case we have $G^{R(A)} = [i\partial_t - H \pm i(\Gamma/2)(A + B)]^{-1}$ $G^K = -2G^R i(\Gamma/2)(A - B)G^A$
- Jump terms lead to complex self energy!

8

 G^K

 G^K

 γR

Adapted from Thompson and Kamenev arXiv:2301.02953

Example: Optical Conductivity

• Paramagnetic response $\Pi^{\mu\nu}(t) = -i\langle [J^{\mu}(t), J^{\nu}(0)] \rangle \theta(t)$ with current operators assumed to be only in the system for simplicity

$$\mathsf{J}^{\mu} = \sum_{k\alpha\beta} j^{\mu}_{k\alpha\beta} c^{\dagger}_{k\alpha} c_{k\beta} , \qquad j^{\mu}_{k\alpha\beta} = \langle u^{L}_{k\alpha} | \partial_{k_{\mu}} H^{NH} | u^{R}_{k\beta} \rangle$$

• Leads to the correlation function

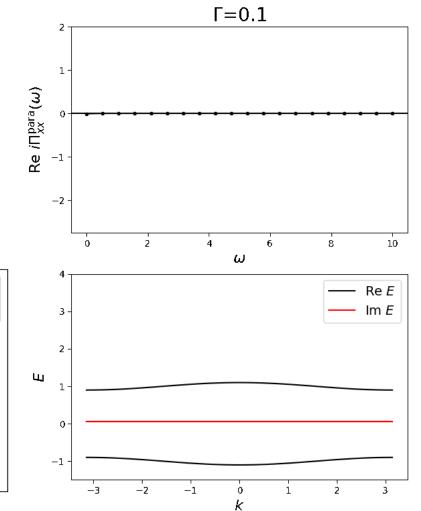
$$\Pi^{\mu\nu}(\Omega) = \pi \left(\sum_{n} \operatorname{Res}[\operatorname{Tr}[j^{\mu}G^{R}(\omega_{n})j^{\nu}G^{K}(\Omega-\omega_{n})], \omega_{n}] + \sum_{m} \operatorname{Res}[\operatorname{Tr}[j^{\mu}G^{K}(\Omega-\omega_{m})j^{\nu}G^{A}(\omega_{m})], \omega_{m}] \right)$$

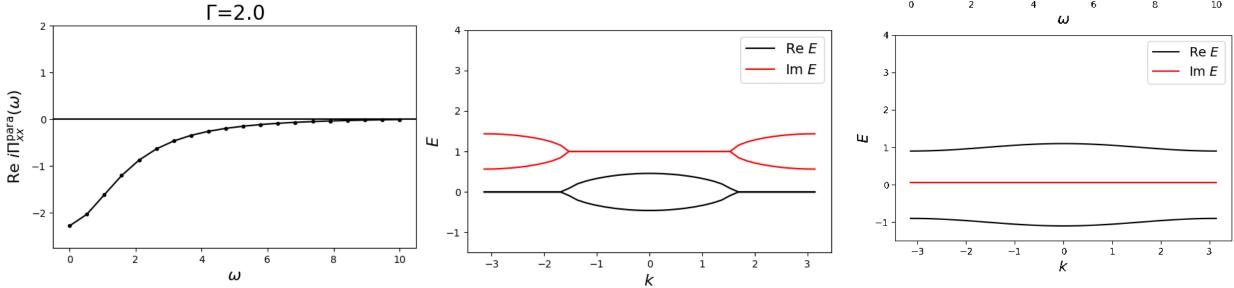
• Note: unlike in Hermitian systems, $Re(\sigma^{dia})$ doesn't automatically vanish

Example: 1D EP Optical Conductivity

- Model with an exceptional point $H = t(1 + \delta \cos(k_x)\sigma_3) + i(\Gamma/2)(\sigma_0 + \sigma_1),$
- Lindbladianize

$$H = t(1 + \delta \cos(k_x)), \quad J = c_1 + c_2$$



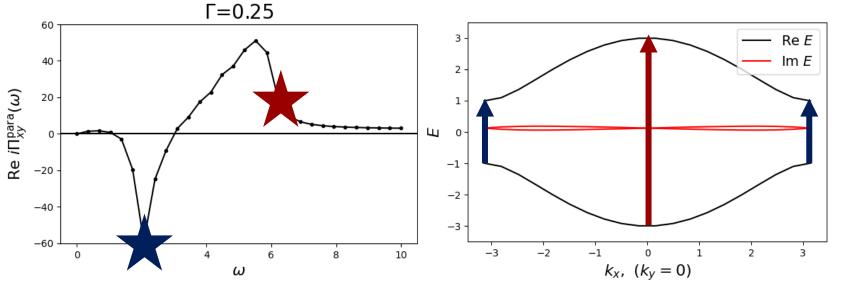


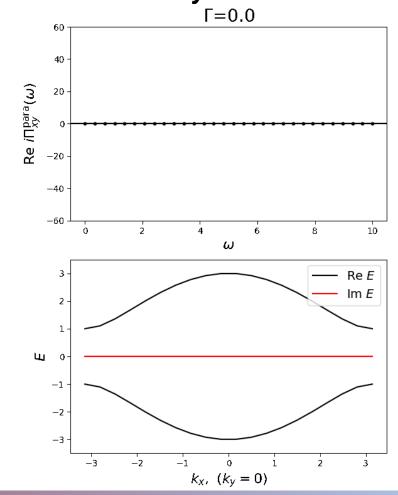
Spenser Talkington and Martin Claassen

Example: QWZ Optical Conductivity

- Model with non-zero Chern number for the closed system
- Lindbladianize with $J = c_1 + c_2$
- $\sigma_{xy}(0)$ vanishes for open system!

• Steady state ≠ equilibrium





Spenser Talkington and Martin Claassen

Outlook

- We want to know the response properties of open quantum systems
- The response for Lindbladian systems requires including jump terms that go beyond those included in non-Hermitian systems
- Forthcoming paper
 - Fermionic Lindblad formalism
 - Discussion of exceptional points, parallel transport, topology, and DC and finite frequency conductivity

ST and MC acknowledge support from the NSF under Grant No. DGE-1845298 and Grant No. DMR-2132591 respectively

System

Jm

Substrate

Jm