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Here I extend the expansion of the Bloch overlap, 〈unk|unk+δk〉, for general Bloch states presented
in PRL 115, 166802 (2015) to third and fourth order, and note a general pattern that the only
non-trivial terms are of first and second order, but that there is an additional second order term,
−AiAjdkidkj/2, not obtained in the PRL paper.

A Physical Motivation

In principle, in a gapped semiconductor the low energy excitons (with large Bohr radius) will have
the full symmetries of the vacuum and will consequently exhibit a hydrogenic/Rydberg spectrum
of energy states. However the low energy excitons in the TMDs MoS2 and WS2 exhibit strongly
non-hydrogenic energy spectra.

The eigenvalue problem for the exciton energy levels Eν is:

(∆k − Eν)Aν(k)− 1

S

∑
k′

2πe2

ε|k − k′|
〈uck|uck′〉〈uvk′ |uvk〉Aν(k′) = 0 (1)

where ∆k is the energy gap, Eν is the orbital energy level of the orbital ν, Aν is the amplitude
of the orbital ν, S is the system quantization area, e is the electron charge, ε is the (screened)
dielectric constant, and |unk〉 are the Bloch wavefunctions.

The two terms contributing to non-hydrogenic spectra are the dielectric constant and the Bloch
overlaps 〈unk|unk′〉. Here, we consider the Bloch overlaps.

The Expansion

In Eqn. 1, the largest contributions come when k′ ∼ k, so we are interested in overlaps of the form:

snk,k+δk := 〈unk|unk+δk〉 (2)

Näıvely, we can Taylor expand this to find:

snk,k+δk = 1 + 〈unk|∂i|unk〉di + 1
2〈u

n
k|∂ij |unk〉dij + . . . (3)

where we use Einstein summation notation for repeated indices, and ∂i = ∂/∂ki, di = dki.

However, this overlap is not gauge invariant under the U(1) gauge transformation:

|unk〉 7→ eiα(k)|unk〉 (4)

since the partial derivatives pull down α(k) terms that do not cancel.

What is gauge invariant is the overlap over a loop:

snk,◦ :=
∏
ki∈◦
〈unki |u

n
ki+δki

〉

It will be easier to work with a sum than a product, so we take the exponential of a logarithm:

snk,◦ = eln(s
n
k,◦)

= e
∑

ki∈◦
ln(〈unki |u

n
ki+δki

〉) (5)
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We now consider the logarithm of the overlaps, which we express as in Eq. 3, letting |u〉 := |unk〉:

ln(〈unki |u
n
ki+δki

〉) = ln(1 + 〈u|∂i|u〉di + 1
2〈u|∂ij |u〉dij + 1

6〈u|∂ijk|u〉dijk + . . . )

= 〈u|∂i|u〉di + 1
2〈u|∂ij |u〉dij + 1

6〈u|∂ijk|u〉dijk
− 1

2〈u|∂i|u〉〈u|∂j |u〉dij −
1
2〈u|∂i|u〉〈u|∂jk|u〉dijk

+ 1
3〈u|∂i|u〉〈u|∂j |u〉〈u|∂k|u〉dijk + . . .

(6)

Where we used the expansion:

ln(1 + x) = x− 1
2x

2 + 1
3x

3 − . . . (7)

and abused notation (the indices in different terms are different).

Now, we identify the Berry connection and the Fubini-Study metric:

iAi = 〈u|∂i|u〉 (8)

gij = 〈u|∂i|u〉〈u|∂j |u〉 − 〈u|∂ij |u〉 (9)

So we see that:

ln(〈unki |u
n
ki+δki

〉) = iAidi − 1
2gijdij + 1

6〈u|∂ijk|u〉dijk
+ 1

2〈u|∂i|u〉(〈u|∂j |u〉〈u|∂k|u〉 − 〈u|∂jk|u〉)dijk
− 1

6〈u|∂i|u〉〈u|∂j |u〉〈u|∂k|u〉dijk + . . .

(10)

or:

ln(〈unki |u
n
ki+δki

〉) = iAidi − 1
2gijdij + 1

2 iAigjkdijk + 1
6 iAiAjAkdijk + 1

6〈u|∂ijk|u〉dijk + . . . (11)

Now, if we make the loop infinitesimal, then:

snk,. = 1 + iAidi − 1
2gijdij + 1

2 iAigjkdijk + 1
6 iAiAjAkdijk + 1

6〈u|∂ijk|u〉dijk (12)

+ 1
2(−AiAjdij − iAigjkdijk)− 1

6 iAiAjAkdijk + . . .

= 1 + iAidi − 1
2(gij +AiAj)dij + 1

6〈u|∂ijk|u〉dijk + . . . (13)

where as usual:

ex = 1 + x+ 1
2x

2 + 1
6x

3 + . . . (14)

This overlap can then be expressed in terms of the Berry curvature instead of the Berry connection
by way of Stoke’s theorem:

iAidi 7→ iΩ · dSk
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Now, to fourth order we have:

ln(〈unki |u
n
ki+δki

〉) = ln(1 + 〈u|∂i|u〉di + 1
2〈u|∂ij |u〉dij + 1

6〈u|∂ijk|u〉dijk + 1
24〈u|∂ijkl|u〉+ . . . )

= 〈u|∂i|u〉di + 1
2〈u|∂ij |u〉dij + 1

6〈u|∂ijk|u〉dijk + 1
24〈u|∂ijkl|u〉dijkl

− 1
2〈u|∂i|u〉〈u|∂j |u〉dij −

1
2〈u|∂i|u〉〈u|∂jk|u〉dijk −

1
6〈u|∂i|u〉〈u|∂jkl|u〉dijkl

− 1
8〈u|∂ij |u〉〈u|∂kl|u〉dijkl + 1

2〈u|∂i|u〉〈u|∂j |u〉〈u|∂kl|u〉dijkl
+ 1

3〈u|∂i|u〉〈u|∂j |u〉〈u|∂k|u〉dijk −
1
4〈u|∂i|u〉〈u|∂j |u〉〈u|∂k|u〉〈u|∂l|u〉dijkl + . . .

= iAidi − 1
2gijdij + 1

2 iAigjkdijk + 1
6 iAiAjAkdijk + 1

6〈u|∂ijk|u〉dijk
− 1

6 iAi〈u|∂jkl|u〉dijkl + 1
24〈u|∂ijkl|u〉dijkl

− 1
8〈u|∂ij |u〉〈u|∂kl|u〉dijkl + 1

2〈u|∂i|u〉〈u|∂j |u〉〈u|∂kl|u〉dijkl
− 1

4〈u|∂i|u〉〈u|∂j |u〉〈u|∂k|u〉〈u|∂l|u〉dijkl + . . .

= iAidi − 1
2gijdij + 1

2 iAigjkdijk + 1
6 iAiAjAkdijk

− 1
8gijgkldijkl + 1

4AiAjgkldijkl + 1
8AiAjAkAldijkl

+ 1
6〈u|∂ijk|u〉dijk −

1
6 iAi〈u|∂jkl|u〉dijkl + 1

24〈u|∂ijkl|u〉dijkl + . . .

(15)

snk,. = 1 + iAidi − 1
2gijdij + 1

2 iAigjkdijk + 1
6 iAiAjAkdijk

− 1
8gijgkldijkl + 1

4AiAjgkldijkl + 1
8AiAjAkAldijkl

+ 1
6〈u|∂ijk|u〉dijk −

1
6 iAi〈u|∂jkl|u〉dijkl + 1

24〈u|∂ijkl|u〉dijkl
+ 1

2 [−AiAjdij − iAigjkdijk + 1
4gijgkldijkl −AiAjgkldijkl −

1
3AiAjAkAldijkl + 1

3 iAi〈u|∂jkl|u〉dijkl]
+ 1

6 [−iAiAjAkdijk + 3
2AiAjgkldijkl]

+ 1
24AiAjAkAldijkl + . . .

= 1 + iAidi − 1
2(gij +AiAj)dij + 1

6〈u|∂ijk|u〉dijk + 1
24〈u|∂ijkl|u〉dijkl + . . .

(16)

So we see that the only higher order terms with order above two are those of the näıve Taylor
series. In fact, this generalizes to arbitrary order because the exponential of the logarithm is just
the identity, and we are only decomposing into (geometric) expressions of first and second order.

Some thoughts:

• Can you construct a model such that the higher order derivatives vanish, i.e. 〈u|∂ijk|u〉 = 0?
Since we are in 2D, this means |u〉 is at most linear in kx and ky, i.e. |u〉 = c0 + cxkx + cyky +
cxykxky, but this is only periodic for a uniform band |u〉 = c0 where cx = cy = cxy = 0.

• Can this be extended to off diagonal terms 〈unk|umk+δk〉?
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