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 The discovery of “orbital angular mo-
mentum” (OAM) in beams of light has in-
stigated an explosion of new ideas and 
opportunities across the fields of micros-
copy, communication, and quantum in-
formation. Previous research has shown 
that light beams, when circularly polar-
ized, can carry spin angular momentum 
(SAM), and that SAM can take on dis-
crete values of −ℏ, 0, or ℏ per photon. 
OAM is revolutionary because, while it is 
still restricted to integer multiples of ℏ per 
photon, there is no upper or lower bound.  
 This freedom can be leveraged to im-
prove material imaging capabilities [1] 
and to create more effective “optical 
tweezers” for manipulating microscopic 
particles [2]. OAM can also be used to in-
crease optical data transmission rates by 
orders of magnitude [3]. Perhaps most 
notably, OAM is a prime candidate for the 
creation of a “qudit” for quantum compu-
ting [4]. A qudit is a unit of quantum infor-
mation represented by a multi-level sys-
tem that can take the place of arrays of 
qubits. I have developed a novel tech-
nique for generating light beams that 
carry OAM much more stably than previ-
ous methods. 
 Light beams carry OAM when their 
phase distributions depend on the azi-
muthal angle around the beam axis. The 
amount of OAM carried is determined by 
how many times the phase of the light cy-
cles fully from −𝜋 to 𝜋 with one full rota-
tion (Fig. 1). In Fig. 1A, the phase of the 
light (represented by color) cycles once 
from −𝜋 to 𝜋 (clockwise, by convention) 
around the beam axis, and thus the beam 
has a “topological charge” of 𝑚 = +1, 

and carries ℏ OAM per photon. Similarly, 
Fig. 1B shows a beam with 𝑚 = +2 top-
ological charge, carrying 2ℏ OAM per 
photon. 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 1. Phase distributions of two beams of light, 
with topological charges 𝑚 = +1 (A) and 𝑚 = +2 
(B), taken on a cross-section perpendicular to the 
propagation axis. Phase is denoted by color, 
measured from −𝜋 to 𝜋. 
 
 The points in the centers of these 
cross-sections, where the phase of the 
light is ambiguous, are known as “phase 
singularities.” As beams carrying OAM 
propagate, their phase singularities can 
move, split, and combine, but the total 
topological charge is conserved. We re-
fer to “singularity splitting” as the process 
by which a single phase singularity of or-
der 𝑚 > 1 will split into many smaller sin-
gularities of orders ±1 that add up to a 
total 𝑚. Singularity splitting disrupts the 
practical applicability of OAM, as it effec-
tively limits the usable modes to 𝑚 = −1, 
0, or +1. The goal of my research is to 
use optical models to identify novel ways 
of improving standard methods of creat-
ing OAM beams in order to better 
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produce their ideal analytic forms, which 
do not undergo singularity splitting. 
 Beams of light in the paraxial regime 
(propagation approximately along beam 
axis) can be expressed as linear combi-
nations of Laguerre-Gaussian (LG) 
modes, whose complex amplitudes in cy-
lindrical coordinates take the form: 
 
 
 
 
 
Where 𝑤(𝑧) is the beam waist (radial dis-
tance at which amplitude decreases by a 
factor of 𝑒), 𝑚 is the topological charge, 
𝑝 ≥ 0 is the “radial index,” and 𝐿!" are the 
generalized Laguerre polynomials. The 
phases 𝜓# and 𝜓$ are first-order correc-
tions for non-paraxial propagation. Here, 
we consider the cases for which 𝑝 = 0. 
 To create such LG modes, we direct 
a typical Gaussian beam (𝑚 = 0) at a 
“pitchfork” spatial light modulator (SLM), 
which reflects the incident beam and ap-
plies a phase retardance equal to 
 
 
 
This SLM creates a diffraction pattern 
where the first order modes have OAM 
+𝑚 and −𝑚, and higher order modes 
have integer multiples of ±𝑚 [5]. 

To model this situation, I designed 
and wrote an optical simulation in C++ of 
a Gaussian beam incident on such a 
pitchfork grating. The simulation uses the 
vectorial equivalent of the Huygens-Fres-
nel principle, treating beams of light as 
sums of infinitely many spherical point 
sources. The complex amplitudes of all 6 
components of the 𝐸7⃗  and 𝐵7⃗  fields are 
computed on the “primary screen,” 
whose center is positioned to capture the 
first order +𝑚 OAM mode diffracted off of 
the pitchfork SLM. The intensity and 

phase of the light are then plotted on this 
screen. 

 
 
 
 
 
 
 
 
 
 
 
FIG. 2. Intensity (A) and phase (B) distributions of 
𝑚 = +1 OAM mode on primary screen. 
 
 The intensity and phase of the 𝑚 =
+1 mode generated by this simulation on 
the primary screen are shown in Fig. 2. 
The phases of the modes created with 
the pitchfork SLM do not have the clean 
distributions expected (shown in Fig. 1) 
given the LG mode equation. The unex-
pected deviations can be separated into 
two categories: the “wobble” and the “spi-
ral.” The wobble is the azimuthal oscilla-
tion of the lines of constant phase, with 
frequency and amplitude increasing with 
radial distance. The spiral is the drift of 
the average value of these oscillations in 
a gentle constant clockwise curve. 
 These deviations from the ideal LG 
mode signify that the actual beam is a su-
perposition of many different lower order 
LG modes with different 𝑝 values, which 
will propagate with different parameters, 
and thus undergo singularity splitting.  
 To address these deviations, I stud-
ied the equation for an analytic LG mode, 
and looked for sets of parameters that 
might create a spiral or wobble. In doing 
so, I determined that the spiraling is due 
to the 𝜓# phase correction. To first order 
from the paraxial approximation, we can 
assume that the beam waist changes hy-
perbolically with propagation distance. 
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The changing beam waist causes the 
wavefronts to be slightly spherically 
curved, resulting in spiraling of the lines 
of constant phase. I remedied this spiral-
ing by adding an extra term to the retard-
ance of the SLM, calculated to directly 
cancel the 𝜓# phase for a given expected 
propagation distance. 
 While exploring the wobbling, I ob-
served that the SLM I had been using in 
the model had no way of implementing 
the radial dependence of the LG mode’s 
amplitude. I thus hypothesized that add-
ing a transmittivity mask to the SLM 
would yield a correct LG mode and elim-
inate the wobble. I implemented this 
transmittivity mask and executed a set of 
experiments to verify the correction. The 
resulting beams have no wobble and do 
not split upon propagation, as shown in 
Figs. 3B and 3D.  

The apparent reduction of wobble in 
the uncorrected beam (Figs. 3A and 3C) 
is due to the stronger spiraling drowning 
out small oscillations, and does not 

prevent singularity splitting. The residual 
spiral in the corrected beam is due to 
higher order adjustments to the paraxial 
approximation, and can be calculated 
and removed if needed, although the first 
order correction is sufficient for most 
practical applications. 
 Applying the above retardance and 
transmittivity masks to a pitchfork SLM 
significantly improves OAM mode pro-
duction to avoid singularity splitting. This 
technique generates OAM modes with a 
much larger range of stable 𝑚 values. 
Enlarging this stable range allows for a 
multitude of practical innovations, includ-
ing the creation of stronger optical twee-
zers, the increase of optical communica-
tion efficiency by orders of magnitude, 
and potentially the development of quan-
tum computers with enough processing 
power to break modern encryption 
schemes. My next step will be to create 
an SLM with my suggested retardance 
and transmittivity masks in the lab to ver-
ify my optical simulation.

 
 
 
 
 
 
 
 
 
 
 
 
FIG. 3. Intensity (A and B) and phase (C and D) distribution comparison for 𝑚 = +4 OAM modes created 
with the original pitchfork SLM (A and C) and the SLM with the spiral and wobble corrections (B and D). 
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