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CoOMPLEX NUMBERS

1 is the imaginary unit which satisfies
2

i1 = —1. In terms of real numbers z

and y, the complex number z is:
z=x 41y

Its complex conjugate is given by:
2=z —iy

The magnitude of a complex number z:

r=|z| = Vzzr = /a2 + 32
Complex numbers can be expressed in
polar form with phases 6 = arg(z):
z=re¥
To go from polar form to Cartesian, it
helps to use Euler’s formula:
e = e (cos(y) + isin(y))

Some identities that may help are:

1 z* z+z* z—2z*

R T 2 o YT T

The square root of a complex number:
Vz = \fre?/?

THE RESIDUE THEOREM

A function f is analytic at z if its power
series converges at z. Let a function
f(2) be expressed by its power series

f(z) = Z anz"

The “residue” of f(z) at 2o is
Res[f(2), 20] = a1
If f(z) is non-zero and analytic at zo:
ORI B e leh)
(z =z "° (n—1)!
If f(%) and g(z) are analytic at zo and
9'(z0) # 0 then:
ra[10) )] - 16
9(2) 9'(2)
Residue Theorem: for any (counter-
clockwise) closed loop v in which there
are a set of isolated singularities {z;}:

7{ f(z)dz = 2mi XV:Res[f(z)7 2]

If P and @ are polynomials, k£ > 0 is
real, and deg(Q) > deg(P) + 2, then:

/_O:O dp D) _ 2m'zj:Res [ggzj]
(

Res {

Q(x)

[ F el

LINEAR FUNCTIONS

Linear functions respect addition and
scalar multiplication

(fr + f2)(@) = fr(z) + fa(x)

() = e ()

A “linear combination” of functions is

Zn n [ ()

where a,, are scalars.

A set {fn} is “linearly independent” if
Zn anfn(z) =0

iff a, =0foralln=1,...,N.

A set {f,} is “complete” if for every g

g(w) = Zn an fn ()
for some scalars a,.

Functions f, g are “orthogonal” on D if
() = [ do f@)glz) =0
D
where (f, g) p is an inner product on D.

A function f is “normalized” on D if

<ﬁﬁp=ﬁfxﬂ@ﬂ@=1

LINEAR TRANSFORMATIONS

L : F — (G isalinear transformation iff
L(afi +bf2) = a L(f1) + b L(f2)
for all scalars a, b and functions f1, fo €

F. Note: differentiation and integra-
tion are linear transformations.

The matrix element of L with fy, fs is

uhaﬁm:i@dxﬁwxaﬁu»

Under a change of bases {f,} —
{gn}, the transformation is the identity
whose matrix elements are given by

o L) = [ do gu(@)1(2)

D

If for some scalar A and function u
Lu = M\u

then X is an eigenvalue of L and w is
the corresponding eigenfunction.

Eigenvalues are often found by solving
det(L—X)=0
where L is expressed in some basis.

The adjoint LT of a linear transforma-
tion L is the L' that for all f1, f» fulfills

(fi,Lf2)p = (L' f1, f2)p
If L = L, then L is self-adjoint, or
“Hermitian” and has real eigenvalues.

CHARACTERISTIC EQUATIONS

Consider the differential equation
Lu(x) =0
and suppose that

N an
L= Z n dx™
n=0
Then since scalar multiples of the iden-
tity commute with every operator

N
L= H % — Tm]_
m=0
where r,, are the roots of the equation

N
E apr” =0
n=0

We then have N + 1 decoupled first-
order equations whose solution is

N
u(z) = Z Cme’ ™"

m=0
for some scalars ¢,,.

EXAMPLE: TAYLOR SERIES

The Taylor expansion of f about xg is
o0

x —x0)"
fla) = 3 F0 ) T2
n=0
which is a linear combination of powers
of z (which are linearly independent).
The first terms of a Taylor expansion
are a good approximation to f if x ~

xg, provided that f is a nice function.

THE POWER SERIES METHOD

Consider the differential equation
Lu(z) =0
and suppose that
N M an
L= Z;) ( Z:Oammmm)dx—n

Then suppose the ansatz
oo
u(z) = Z anz"
n=0

and write down Lu(x) and reindex so
that all sums go over the same n—since
different powers are linearly indepen-
dent, the coefficients are each zero,
which gives a recursion relation. Often
these recursion relations can be solved
for some known (special) function with
only the first terms undetermined.
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FOURIER SERIES

It happens to be the case that
{sin(nmx/L),cos(nmxz/L)} where n
ranges over the natural numbers are
a complete and orthogonal set of
functions for all L-periodic functions.
With normalization 1/v/L we define

1 nm 1 nmw
s Lm), cn—\/fcos(Lx)
from which we can decompose any L-

periodic function as
(oo}

flz) = Z<Snaf>[0,2L]5n+<cnaf>[0,2L]Cn
n=0
where

2L
(a,b)0,21) :/0 dz a(z)b(x)

is a scalar, the inner product on [0, 2L].

Sp = sin (

Orthogonormality means that

<5na 3m> = <Cn7 Cm> = Onm

and ($p, ¢m) = 0.
STURM-LIOUVILLE THEORY

Sines and cosines are not the only com-
plete orthogonal functions, but they
are good for the wave equation on
rectangular geometries.  For differ-
ent differential equations on different
geometries, different orthogonal func-
tions may be preferable. The expan-
sion then works the exact same way.

Let p(z),r(x) > 0 and p,q,r continu-
ous with continuous derivatives, then

a% (p(x)gz) +qe)u = —Ar(z)u

is a Sturm-Liouville equation.

If we have the boundary conditions:
au(0,t) + Bu’(0,t) =0
yu(L,t) + éu'(L,t) =0

then the Sturm-Liouville operator is
self-adjoint, and so the \ are real.

If g <0,r >0 p>0, purp <0,
and puu/|p < 0 then A > 0 and we get
a complete set of wave solutions {u,,}
where )\, are increasing. The A, and
thence the u,, can then be found using
a shooting method (counting nodes).

Aside: this is equivalent to showing a
Schrodinger equation hasaground state.

FOURIER TRANSFORMS

If we don’t have a L-periodic function
we can still decompose it by integrat-
ing over all frequencies k instead of just
k = nm /L. This representation is

- L / dk f(k)etit
27 J_ o

where f(k‘) is given by
fio = [ dx faye

This is useful because the Fourier
transform turns calculus into algebra:
d/dz transforms into —ik.

LAPLACE TRANSFORMS

A formulation that is useful for signals
starting at ¢ = 0 is the Laplace trans-
form (the Wick rotation of the Fourier
transform) of such a function f(t)

o0

F(z) :/0 dt f(t)e *t

whose inverse is

) = — / R F(z)et=

21 Jo—ioo
with ¢ to the right of all F(z)’s poles.

Dirac DELTA FUNCTIONS

A o-function is any function where

/dxf (2) = £(0)

for all f(z) which means that §(z) has
integral 1 and is peaked at 0.

If g(x) has integral 1 on R, then
gn(x) = (1/n)g(x/n)
also has integral 1 on R, and
lim gy () = 6(x)
from which we can find as many repre-
sentations of the §-function as we want.

For example, the Poisson kernel:

1 1
) T e

from which one can show that

= —in §(x)

m -
n—0 x +1n
For a constant scalar c:
o(cx) = d0(x)/|c|
and § has units inverse to its argument.
For continuously differentiable f(z)

o= 3 4

GREEN’S FUNCTIONS

Consider the differential equation
Lu(z) = f(x)

The Green’s function of a linear oper-

ator is its inverse which means that

LG(z,2') = 6(x — 2')
The solution is then for domain D

u(x) :/ dr' G(z,2")f(2")
D
which follows directly from applying L.

So how do we find G7
1. Solve LG = 0 (for = # z’)
2. (Apply boundary conditions)
3. Exploit (1) continuity at 2’ and
(2) 1= [3 75 oo —a) =[5 7° LG

to match up the solutions at z’

SEPARATION OF VARIABLES

This course only focuses on solving
ODEs, and a prime way to get ODEs is
from PDEs via separation of variables

Lf=0
where a solution is postulated such as
f(@,y,2,t) = X (@)Y (y) Z(2)T(t)

separate ODEs are found and solved,
and by uniqueness this is the solution.

For example with the wave equation

there are 11 separable coordinate sys-
tems (see Morse and Feshbach pg 655).

Aside: in spherical coordinates any
Schrédinger equation with potential

V=alr)+ @ T :f;;)(e)

is separable (see Landau Vol 1 Sec 48).

HERE BE DRAGONS

The methods above (and all known
methods) fail if non-linearities such as
a convective derivative are present in
the differential equation. For exam-
ple, (dis)proving that there are always
smooth solutions to the Navier-Stokes
equation will win you one million dol-

lars. The simplified Euler equations
have the convective derivative

ov

— 4+ v -Vov = f,vp

o+

for velocity v, density p, and pressure P.
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