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Complex Numbers
i is the imaginary unit which satisfies
i2 = −1. In terms of real numbers x
and y, the complex number z is:

z = x+ iy

Its complex conjugate is given by:
z∗ = x− iy

The magnitude of a complex number z:
r = |z| =

√
zz∗ =

√
x2 + y2

Complex numbers can be expressed in
polar form with phases θ = arg(z):

z = reiθ

To go from polar form to Cartesian, it
helps to use Euler’s formula:

ez = ex
(
cos(y) + i sin(y)

)
Some identities that may help are:
1

z
=

z∗

|z|2
, x =

z + z∗

2
, y =

z − z∗

2i

The square root of a complex number:
√
z =

√
reiθ/2

The Residue Theorem
A function f is analytic at z if its power
series converges at z. Let a function
f(z) be expressed by its power series

f(z) =

∞∑
n=−∞

anz
n

The “residue” of f(z) at z0 is
Res[f(z), z0] = a−1

If f(z) is non-zero and analytic at z0:

Res

[
f(z)

(z − z0)n
, z0

]
=

f (n−1)(z0)

(n− 1)!

If f(z) and g(z) are analytic at z0 and
g′(z0) 6= 0 then:

Res

[
f(z)

g(z)
, z0

]
=

f(z)

g′(z)

Residue Theorem: for any (counter-
clockwise) closed loop γ in which there
are a set of isolated singularities {zj}:∮

γ

f(z)dz = 2πi
∑
j

Res[f(z), zj ]

If P and Q are polynomials, k > 0 is
real, and deg(Q) ≥ deg(P ) + 2, then:∫ ∞

−∞
dx

P (x)

Q(x)
= 2πi

∑
j

Res

[
P (z)

Q(z)
, zj

]
∫ ∞

−∞
dx

P (x)

Q(x)
eikx=

2πi

ek

∑
j

Res

[
P (z)

Q(z)
, zj

]

Linear Functions
Linear functions respect addition and
scalar multiplication

(f1 + f2)(x) = f1(x) + f2(x)

(cf)(x) = c f(x)

A “linear combination” of functions is∑
n
anfn(x)

where an are scalars.
A set {fn} is “linearly independent” if∑

n
anfn(x) = 0

iff an = 0 for all n = 1, . . . , N .
A set {fn} is “complete” if for every g

g(x) =
∑

n
anfn(x)

for some scalars an.
Functions f , g are “orthogonal” onD if

〈f, g〉D =

∫
D

dx f(x)g(x) = 0

where 〈f, g〉D is an inner product on D.

A function f is “normalized” on D if
〈f, f〉D =

∫
D

dx f(x)f(x) = 1

Linear Transformations
L : F → G is a linear transformation iff

L(af1 + bf2) = aL(f1) + bL(f2)

for all scalars a, b and functions f1, f2 ∈
F . Note: differentiation and integra-
tion are linear transformations.
The matrix element of L with f1, f2 is
〈f1, Lf2〉D =

∫
D

dx f1(x)
(
Lf2(x)

)
Under a change of bases {fn} 7→
{gn}, the transformation is the identity
whose matrix elements are given by

〈gm,1fn〉D =

∫
D

dx gm(x)fn(x)

If for some scalar λ and function u

Lu = λu

then λ is an eigenvalue of L and u is
the corresponding eigenfunction.
Eigenvalues are often found by solving

det(L− λI) = 0

where L is expressed in some basis.
The adjoint L† of a linear transforma-
tion L is the L† that for all f1, f2 fulfills

〈f1, Lf2〉D = 〈L†f1, f2〉D
If L = L†, then L is self-adjoint, or
“Hermitian” and has real eigenvalues.

Characteristic Equations
Consider the differential equation

Lu(x) = 0

and suppose that

L =

N∑
n=0

an
dn

dxn

Then since scalar multiples of the iden-
tity commute with every operator

L =

N∏
m=0

d

dx
− rm1

where rm are the roots of the equation
N∑

n=0

anx
n = 0

We then have N + 1 decoupled first-
order equations whose solution is

u(x) =

N∑
m=0

cmermx

for some scalars cm.

Example: Taylor Series
The Taylor expansion of f about x0 is

f(x) =

∞∑
n=0

f (n)(x0)
(x− x0)

n

n!

which is a linear combination of powers
of x (which are linearly independent).
The first terms of a Taylor expansion
are a good approximation to f if x ∼
x0, provided that f is a nice function.

The Power Series Method
Consider the differential equation

Lu(x) = 0

and suppose that

L =

N∑
n=0

( M∑
m=0

am,nx
m
) dn

dxn

Then suppose the ansatz

u(x) =

∞∑
n=0

anx
n

and write down Lu(x) and reindex so
that all sums go over the same n—since
different powers are linearly indepen-
dent, the coefficients are each zero,
which gives a recursion relation. Often
these recursion relations can be solved
for some known (special) function with
only the first terms undetermined.
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Fourier Series
It happens to be the case that
{sin(nπx/L), cos(nπx/L)} where n
ranges over the natural numbers are
a complete and orthogonal set of
functions for all L-periodic functions.
With normalization 1/

√
L we define

sn=
1√
L
sin

(nπ
L

x
)
, cn=

1√
L
cos

(nπ
L

x
)

from which we can decompose any L-
periodic function as

f(x) =

∞∑
n=0

〈sn, f〉[0,2L]sn+〈cn, f〉[0,2L]cn

where
〈a, b〉[0,2L] =

∫ 2L

0

dx a(x)b(x)

is a scalar, the inner product on [0, 2L].

Orthogonormality means that
〈sn, sm〉 = 〈cn, cm〉 = δnm

and 〈sn, cm〉 = 0.

Sturm-Liouville Theory
Sines and cosines are not the only com-
plete orthogonal functions, but they
are good for the wave equation on
rectangular geometries. For differ-
ent differential equations on different
geometries, different orthogonal func-
tions may be preferable. The expan-
sion then works the exact same way.

Let p(x), r(x) ≥ 0 and p, q, r continu-
ous with continuous derivatives, then

∂

∂x

(
p(x)

∂u

∂x

)
+ q(x)u = −λr(x)u

is a Sturm-Liouville equation.

If we have the boundary conditions:
αu(0, t) + βu′(0, t) = 0

γu(L, t) + δu′(L, t) = 0

then the Sturm-Liouville operator is
self-adjoint, and so the λ are real.

If q ≤ 0, r > 0, p > 0, puu′|0 ≤ 0,
and puu′|L ≤ 0 then λ ≥ 0 and we get
a complete set of wave solutions {un}
where λn are increasing. The λn and
thence the un can then be found using
a shooting method (counting nodes).

Aside: this is equivalent to showing a
Schrödingerequationhasagroundstate.

Fourier Transforms
If we don’t have a L-periodic function
we can still decompose it by integrat-
ing over all frequencies k instead of just
k = nπ/L. This representation is

f(x) =
1

2π

∫ ∞

−∞
dk f̃(k)e+ikx

where f̃(k) is given by

f̃(k) =

∫ ∞

−∞
dx f(x)e−ikx

This is useful because the Fourier
transform turns calculus into algebra:
d/dx transforms into −ik.

Laplace Transforms
A formulation that is useful for signals
starting at t = 0 is the Laplace trans-
form (the Wick rotation of the Fourier
transform) of such a function f(t)

F (z) =

∫ ∞

0

dt f(t)e−zt

whose inverse is

f(t) =
1

2πi

∫ c+i∞

c−i∞
dz F (z)e+zt

with c to the right of all F (z)’s poles.

Dirac Delta Functions
A δ-function is any function where∫ ∞

−∞
dx f(x)δ(x) = f(0)

for all f(x) which means that δ(x) has
integral 1 and is peaked at 0.
If g(x) has integral 1 on R, then

gη(x) = (1/η)g(x/η)

also has integral 1 on R, and
lim
η→0

gη(x) = δ(x)

from which we can find as many repre-
sentations of the δ-function as we want.
For example, the Poisson kernel:

πδ(x) = lim
η→0

1

η

1

1 + (x/η)2

from which one can show that

lim
η→0

1

x+ iη
= −iπ δ(x)

For a constant scalar c:
δ(cx) = δ(x)/|c|

and δ has units inverse to its argument.
For continuously differentiable f(x)

δ(f(x)) =
∑

roots i

δ(x− xi)

|f ′(xi)|

Green’s Functions
Consider the differential equation

Lu(x) = f(x)

The Green’s function of a linear oper-
ator is its inverse which means that

LG(x, x′) = δ(x− x′)

The solution is then for domain D

u(x) =

∫
D

dx′ G(x, x′)f(x′)

which follows directly from applying L.
So how do we find G?

1. Solve LG = 0 (for x 6= x′)
2. (Apply boundary conditions)
3. Exploit (1) continuity at x′ and

(2) 1=
∫ x′+ε

x′−ε
δ(x−x′)=

∫ x′+ε

x′−ε
LG

to match up the solutions at x′

Separation of Variables
This course only focuses on solving
ODEs, and a prime way to get ODEs is
from PDEs via separation of variables

Lf = 0

where a solution is postulated such as
f(x, y, z, t) = X(x)Y (y)Z(z)T (t)

separate ODEs are found and solved,
and by uniqueness this is the solution.
For example with the wave equation

L = ∇2 − 1

c2
∂2

∂t2

there are 11 separable coordinate sys-
tems (see Morse and Feshbach pg 655).
Aside: in spherical coordinates any
Schrödinger equation with potential

V = a(r) +
b(θ)

r2
+

c(ϕ)

r2 sin2(θ)

is separable (see Landau Vol 1 Sec 48).

Here Be Dragons
The methods above (and all known
methods) fail if non-linearities such as
a convective derivative are present in
the differential equation. For exam-
ple, (dis)proving that there are always
smooth solutions to the Navier-Stokes
equation will win you one million dol-
lars. The simplified Euler equations
have the convective derivative

∂v

∂t
+ v · ∇v = −1

ρ
∇P

for velocity v, density ρ, and pressureP .
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