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1 Symmetries and Angular Momentum
Sakurai Chapters 3 and 4

1.1 Symmetries
Sakurai 4.1, 4.2, 4.4

If a change in reference frame does not change the expected outcome, then that change is called a symmetry
of the system. Systems may either be continuous or discrete, for example translational symmetry in a vacuum
versus in a lattice. There are two views of symmetries:

1. change the basis vectors

2. change the state

Mathematically, we represent this in terms of a symmetry transformation S, where:

|ψ′〉 = S|ψ〉 (1.1)

Since there is no change in the expected outcome, the overlaps are preserved:

|〈ψ|φ〉|2 = |〈Sψ|Sφ〉|2 (1.2)

Wigner’s Theorem states that every symmetry transformation corresponds to either

1. a linear, unitary operator

S(a|a〉+ b|b〉) = aS|a〉+ bS|b〉, 〈Sa|Sb〉 = 〈a|b〉 (1.3)

2. or, an anti-linear, anti-unitary operator1

S(a|a〉+ b|b〉) = a∗S|a〉+ b∗S|b〉, 〈Sa|Sb〉 = (〈a|b〉)∗ (1.4)

The matrix elements of an operator A transform under symmetry transformation2 as:

〈φ|A|ψ〉 7→ 〈φ|S†AS|ψ〉 (1.5)

Where the adjoint A† of an operator A is:

linear: 〈a|A†|b〉 = (〈b|A|a〉)∗ (1.6)
anti-linear: 〈a|A†|b〉 = 〈b|A|a〉 (1.7)

Now, suppose that a unitary operator U corresponds to a continuous symmetry, and ε is a small parameter.
Then we say that the hermitian operator A is the generator of the transformation if:

U(ε) = eiεA (1.8)

As an alternative to defining symmetries by the conservation of overlaps, we may consider the Schrödinger
equation:

H|ψ〉 = i~
∂

∂t
|ψ〉 (1.9)

1Such as the complex conjugation operator K.
2Also known as a similarity transformation.
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Which becomes under a time-independent symmetry transformation U :

(UHU−1)U |ψ〉 = ±i~ ∂
∂t
U |ψ〉 (1.10)

Where + corresponds to unitary U and − corresponds to anti-unitary U . Now, if UHU−1 = ±H, and U is
unitary, then U |ψ〉 satisfies the same form of the Schrödinger equation, and we say that the system has the
symmetry corresponding to U .

1.1.1 Parity

Parity is the symmetry corresponding to reversal of all spatial coordinates (ex. taking a right handed
coordinate system and turning it into a left handed coordinate system):

|x′〉 = |−x〉 (1.11)

We introduce the symmetry operator π, and see that:

π|x〉 = |−x〉 (1.12)
π2|x〉 = |x〉 (1.13)

Since {|x〉} is complete, we have that π2 = 1, and so π = π−1. Thence its eigenvalues are ±1.

In operator form, we have the transformations of x and p:

πxπ−1 = −x (1.14)
πpπ−1 = −p (1.15)

So if we apply this to angular momentum:

πLπ−1 = (πxπ−1)× (πpπ−1) (1.16)
= (−1)2x× p (1.17)
= L (1.18)

Now, parity gives us the simplest example of a selection rule. Suppose that:

π|φa〉 = (−1)a|φa〉 a = 0, 1 (1.19)
π|φb〉 = (−1)b|φb〉 b = 0, 1 (1.20)

πAcπ
−1 = (−1)cAc c = 0, 1 (1.21)

Then we can write:

〈φb|Ac|φa〉 = 〈φb|π−1πAcπ
−1π|φa〉 (1.22)

= (−1)a+b+c〈φb|Ac|φa〉 (1.23)

And evidently, if a+ b+ c is odd, then:

〈φb|Ac|φa〉 = −〈φb|Ac|φa〉 (1.24)

So 〈φb|Ac|φa〉 = 0, which is a selection rule that rules out many matrix elements.
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1.1.2 Time Reversal Symmetry

An symmetry transformation corresponding to an anti-unitary operator is time reversal symmetry. We have
the familiar relation:

|ψ(t)〉 = U(t, 0)|ψ(0)〉 (1.25)
= e−iHt|ψ(0)〉 (1.26)

Now, we introduce the time reversal operator Θ, where:

Θ|ψ(t)〉 = eiHtΘ|ψ(0)〉 (1.27)

So we have the relation Θe−iHt = eiHtΘ, from which we may show by illustrative example3 or by the
Schrödinger equation that Θ is anti-linear and anti-unitary, and that if a system is time-reversal invariant:

[Θ,H] = 0 (1.28)

In such a system, if we have an eigenstate |n〉, we have:

H|n〉 = En|n〉 (1.29)
HΘ|n〉 = EnΘ|n〉 (1.30)

So we see that |n〉 and Θ|n〉 are either the same state or there is a Kramer’s degeneracy.

The time-reversal operator acts as:

ΘpΘ−1 = −p (1.31)
ΘLΘ−1 = −L (1.32)
ΘSΘ−1 = −S (1.33)

In fact Θ acts for complex conjugation operator K on spin as4:

Θ = e−iπSy/~K (1.34)

So we see that for spins Θ2 = (−1)2j , and so:

Θ2|j,m〉 =

{
+|j,m〉 j = 0, 1, 2, . . .

−|j,m〉 j = 1
2 ,

3
2 ,

5
2 , . . .

(1.35)

1.2 Angular Momentum
Sakurai 3.1, 3.2, 3.5, 3.8, 3.11

The total angular momentum J = L+S is a generator as in Eq. 1.8. In fact, J is the generator corresponding
to the symmetry transformation of rotations about the axis specified by n̂:

U(R(ω, n̂)) = exp

[
− iω

~
(J · n̂)

]
(1.36)

≈ 1− iω

~
(J · n) +O(ω2) (1.37)

We define the overlap to be:

Dj
m′,m = 〈j,m′|U(R)|j,m〉 (1.38)

3Ex. the free particle, H0 = p2/2m.
4Theorem: every anti-unitary operator V can be written as V = KU , or V = UK for some unitary U and the complex

conjugation operator K.
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1.2.1 Review of Angular Momentum

We have the relations for angular momentum:

L = x× p (1.39)

[Li, Lj ] = i~
∑
k

εijkLk (1.40)

These algebraic relations define a Lie algebra. We now recall the raising and lowering operators:

J± = Jx ± iJy (1.41)

Where we have the relation for j = n/2 for n ∈ N and m ∈ {−j,−j + 1, . . . , j}:

J±|j,m〉 =
√
(j ∓m)(j ±m+ 1) ~|j,m± 1〉 (1.42)

Additionally, we note the eigenvalue relations:

J2|j,m〉 = j(j + 1) ~2|j,m〉 (1.43)
Jz|j,m〉 = m~|j,m〉 (1.44)

1.2.2 Tensor Operators

Using the mathematics of tensor operators, we may systematically approach problems involving angular
momentum. First, we define the Cartesian tensor operator:

Tijk =
∑

i′,j′,k′

Rii′Rjj′Rkk′ (1.45)

Now we introduce the spherical rank-k tensor T k
q which has 2k+1 components. Spherical tensors transform

as:

U†(R)T k
q U(R) =

k∑
q′=−k

(Dk
q,q′)

∗ T k
q′ (1.46)

If we take the infinitesimal rotations and make them finite, we arrive at the following commutation rules:5

[J · n̂, T k
q ] =

∑
q′

T k
q′ 〈k, q′|J · n̂|k, q〉 (1.47)

[Jz, T
k
q ] = ~q T k

q (1.48)

[J±.T
k
q ] = ~

√
(k ∓ q)(k ± q + 1) T k

q±1 (1.49)

1.2.3 Addition of Angular Momentum

Suppose we have two mutually observable angular momenta represented by the total angular momentum
operators J1 and J2:

[J1,i, J2,j ] = 0 (1.50)

Which means we have the parallel to Eq. 1.43:

J2
1|2|j1, j2;m1,m2〉 = j1|2(j1|2 + 1)~2|j1, j2;m1,m2〉 (1.51)
Jz
1|2|j1, j2;m1,m2〉 = m1|2~|j1, j2;m1,m2〉 (1.52)

Which also hold for J1|2 7→ J where:

J = J1 + J2 (1.53)
5Alternately, these commutation relations fully characterize spherical tensor operators.
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1.2.4 Wigner-Eckart Theorem

We saw with parity that there can be selection rules which enable us to say that many matrix elements
of an operator are zero. A powerful selection rule comes in the form of the Wigner-Eckart Theorem. One
consequence is the m-selection rule:

〈α′; j′,m′|T k
q |α; j,m〉 = 0, unless |m′ −m| = q (1.54)

This selection rule may be used if we note that z acts as a rank-1 spherical tensor, so in the Hydrogen atom:

〈n′`′m′|z|n`m〉 = 0, unless |m′ −m| = 0 (1.55)

We also have:

〈n′`′m′|z|n`m〉 = 0, unless |`′ − `| = 1 (1.56)

Now we introduce the inverse Clebsch-Gordon coefficient Cj,m
q,m where for some rank-k spherical tensor T k

q

we have:6

T k
q |α; j,m〉 = Cj,m

q,m|k; j,m〉 (1.57)

It may then be shown that for a constant independent of m, m′, and q that:

〈α′; j′,m′|T k
q |α; j,m〉 = constant〈jk;mq|k; j′m′〉 (1.58)

This is the Wigner-Eckart Theorem where the constant is given by:

constant =
〈α′; j′||T k||α; j〉√

2j + 1
(1.59)

Now we note that unless j = j′ and m = m′:

〈α′; j′m′|α; j,m〉 = 0 (1.60)

This gives us selection rule for the matrix elements of T k
q .

In the example of the z-component of angular momentum:

〈α′; j′m′|Jz|α; j,m〉 = m〈α′; j′m′|α; j,m〉 (1.61)

When j = j′ and T k
q is a vector operator V , the Wigner-Eckart Theorem simplifies and we have the Projection

Theorem wherein:

〈α′; j′,m′|Vq|α; j,m〉 = 〈α′; j′,m′|J · V |α; j,m〉
~2j(j + 1)

〈j,m′|Jq|j,m〉 (1.62)

6Clebsch-Gordon coefficients are tedious, but Mathematica and WolframAlpha are there to help with the command
ClebschGordan[j1, m1, j2, m2, j, m]
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2 Perturbation Theory
Sakurai Chapter 5

Only a few problems are exactly solvable, in that we have analytic expressions for their eigenfunctions |ψ(0)
n 〉

and eigenvalues E(0)
n :

H0|ψ(0)
n 〉 = E(0)

n |ψ(0)
n 〉 (2.1)

Yet, the behavior we are interested in is often that of a slightly “perturbed” system. Namely, we can consider
perturbations H ′ of strength λ around the solutions of a problem with a known solution H0:

H = H0 + λH ′ (2.2)

As an example, we may consider an electron in a system of two quantum dots with onsite potentials VL and
VR, and unperturbed eigenstates |L〉 = (1, 0)T and |R〉 = (0, 1)T and then add a perturbation to represent
tunneling between the left and right dots:

H =

(
VL 0
0 VR

)
+

(
0 λ
λ 0

)
(2.3)

While this perturbed two state system has an exact solution, in many situations we will not be so lucky, so
we look for a solution of the form7 8:

|ψn〉 = |ψ(0)
n 〉+ λ|ψ(1)

n 〉+ λ2|ψ(2)
n 〉+ . . . (2.4)

En = E(0)
n + λE(1)

n + λ2E(2)
n + . . . (2.5)

Where we have:

(H0 + λH ′)|ψn〉 = En|ψn〉 (2.6)

2.1 Time Independent Non-Degenerate Perturbation Theory
Sakurai 5.1

Rearranging Eq. 2.6, we find that:

λH ′
(
|ψ(0)

n 〉+ λ|ψ(1)
n 〉+ . . .

)
=

(
E(0)

n + λE(1)
n + . . .

)(
|ψ(0)

n 〉+ λ|ψ(1)
n 〉+ . . .

)
−H0

(
|ψ(0)

n 〉+ λ|ψ(1)
n 〉+ . . .

)
(2.7)

Equating powers of λ in Eq. 2.7 to order λ0, we regain the time-independent Schrödinger equation for the
unperturbed system:

0 = E(0)
n |ψ(0)

n 〉 −H0|ψ(0)
n 〉 (2.8)

Equating powers of λ in Eq. 2.7 to order λ1:

λH ′|ψ(0)
n 〉 = E(0)

n λ|ψ(1)
n 〉+ λE(1)

n |ψ(0)
n 〉 −H0λ|ψ(1)

n 〉 (2.9)

Applying 〈ψ(0)
n | to Eq. 2.9, we find the first-order corrections to the energies:

λE(1)
n = 〈ψ(0)

n |λH ′|ψ(0)
n 〉 (2.10)

7Theorem: for finite dimensional Hilbert spaces, there is always a finite radius of convergence. For infinite dimensional
spaces, the radius of convergence is often 0, but the first few terms may still be useful.

8The overlap 〈ψ(0)
n |ψ(1)

n 〉, can take any value and be consistent with the equations in this section, so we take 〈ψ(0)
n |ψ(1)

n 〉 = 0.
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If instead we apply 〈ψ(0)
m | to Eq. 2.9, where 〈ψ(0)

m |ψ(0)
n 〉 = δmn, and we assume the energies are non-degenerate

(|E(0)
m − E

(0)
n | 6= 0) we find the first-order corrections to the wavefunctions:

λ〈ψ(0)
m |ψ(1)

n 〉 = 〈ψ(0)
m |λH ′|ψ(0)

n 〉
E

(0)
n − E

(0)
m

m 6= n (2.11)

Equating powers of λ in Eq. 2.7 to order λ2:

λH ′λ|ψ(1)
n 〉 = E(0)

n λ2|ψ(2)
n 〉+ λE(1)

n λ|ψ(1)
n 〉+ λ2E(2)

n |ψ(0)
n 〉 −H0λ

2|ψ(2)
n 〉 (2.12)

Applying 〈ψ(0)
n | to Eq. 2.12, inserting the identity as 1 =

∑
m |ψ(0)

m 〉〈ψ(0)
m |, and through algebraic manipula-

tions, we find the second-order corrections to the energies:

λ2E(2)
n =

∑
m6=n

|〈ψ(0)
m |λH ′|ψ(0)

n 〉|2

E
(0)
n − E

(0)
m

(2.13)

Likewise, applying 〈ψ(0)
m | to Eq. 2.12, we find the second-order corrections to the wavefunctions:

λ2〈ψ(0)
m |ψ(2)

n 〉 =
∑
k 6=n

〈ψ(0)
m |λH ′|ψ(0)

k 〉〈ψ(0)
k |λH ′|ψ(0)

n 〉
(E

(0)
n − E

(0)
m )(E

(0)
n − E

(0)
k )

− 〈ψ(0)
n |λH ′|ψ(0)

n 〉〈ψ(0)
m |λH ′|ψ(0)

n 〉
(E

(0)
n − E

(0)
m )2

(2.14)

We note that for each of the equations for the corrections to the wave functions above we may use:

λN |ψ(N)
n 〉 =

∑
m

λN |ψ(0)
m 〉〈ψ(0)

m |ψ(N)
n 〉 =

∑
m

λN 〈ψ(0)
m |ψ(N)

n 〉|ψ(0)
m 〉 (2.15)

2.2 Time Independent Degenerate Perturbation Theory
Sakurai 5.2

The relations for degenerate perturbation theory follow identically as those of non-degenerate perturbation
theory do, except that now we require that the perturbation be diagonal in the degenerate subspace. To see
this, we note that once we arrive at the expression of Eq. 2.11, if E(0)

n = E
(0)
m , the expression only makes

sense if 〈ψ(0)
m |λH ′|ψ(0)

n 〉 = 0:

E(0)
n λ〈ψ(0)

m |ψ(1)
n 〉 − E(0)

m λ〈ψ(0)
m |ψ(1)

n 〉 = 〈ψ(0)
m |λH ′|ψ(0)

n 〉 (2.16)

Hence, we choose the unperturbed basis of the degenerate subspace, {|ψ(0)
n 〉}, such that λH ′ is diagonal. To

find these states, choose any set linearly independent states {|φ(0)n 〉} that span the degenerate subspace, then
solve the secular equation, where λVij = 〈φ(0)i |λH ′|φ(0)j 〉, and E

(1)
n are the first order energy shifts:λV11 λV12 . . .

λV21 λV22 . . .
...

...
. . .



〈φ(0)1 |ψ(0)

n 〉
〈φ(0)2 |ψ(0)

n 〉
...

 = λE(1)
n


〈φ(0)1 |ψ(0)

n 〉
〈φ(0)2 |ψ(0)

n 〉
...

 (2.17)

To arrive at the secular equation, we introduce the projection operator onto the degenerate subspace P (0)

spanned by {|φ(0)n 〉}, and introduce the projection operator onto the remaining states P (0)
⊥ = 1−P (0). Since

we are interested in stationary states, we may consider the time-independent Schrödinger Equation:

H|ψ(0)
n 〉 = E|ψ(0)

n 〉 (2.18)
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Collecting terms of order λ and applying P (0) on the left and the right:

(P (0)λH ′P (0) − λE(1)
n )|ψ(0)

n 〉 = 0 (2.19)

Which is precisely Eq. 2.17, where the eigenstates of P (0)λH ′P (0) are the correct zero-order states, and the
corresponding eigenvalues are the first-order energy corrections.

For higher order corrections to the states and the energies, we may use the corresponding formulas for
non-degenerate perturbation theory, except in the summations, where we exclude all contributions from
{|ψ(0)

n 〉}.9

2.3 Applications of Time Independent Perturbation Theory to Hydrogenic Atoms
Mostly Sakurai 5.3

Hydrogen, ionized Helium, and doubly ionized Lithium have one electron outside attracted to a nucleus,
while hydrogenic atoms such as Sodium, Potassium, have one electron outside a closed shell surrounding a
nucleus. For Hydrogen, where the Coulomb potential is unshielded, the unperturbed Hamiltonian is:

H0 =
p2

2m
− Ze2

r
(2.20)

The energies of the hydrogen atom given by the principle quantum number n, where k = 1/4πε0:

E(0)
n = − 1

n2
mk2Z2e4

2~2
(2.21)

The Hydrogen wavefunctions expressed in the position basis are separable into a radial wavefunction Rn`(r)
and a spherical harmonic Y m

` (θ, ϕ) as:

|n`m〉 = Rn`(r)Y
m
` (θ, ϕ) (2.22)

2.3.1 Stark Effect

Sakurai 5.1 and 5.2

Here we consider a Hydrogen atom in an applied electric field E ẑ, which perturbs the Hamiltonian as:

H ′ = −eEz (2.23)

For the non-degenerate case,10 we consider the ground state of Hydrogen, |100〉.

The first order energy correction is zero by the Wigner-Eckart Theorem,11 Eq. 1.58, since |`′− `| 6= 1:

E
(1)
1 = −eE〈100|z|100〉 = 0 (2.24)

However, second order energy correction is non-vanishing:

E
(2)
1 = −e2E2

∞∑
n′=2

|〈100|z|n′10〉|2

E
(0)
n′ − E

(0)
n

= −9a30
4

E2 (2.25)

We note that this corresponds to an induced dipole moment d of:

d = −∂E
∂E

=
9a30
2

E (2.26)

For the degenerate case,12 we consider the first excited states of Hydrogen: |200〉, |21-1〉, |210〉, and |211〉.
9If degeneracy is not lifted by the first-order energy shifts, then {|ψ(0)

n 〉} are the eigenstates of the secular equation
(P (0)λH′P

(0)
⊥ λH′P (0) − λE

(1)
n )|ψ(0)

n 〉 = 0.
10Neither H0 nor H′ have spin dependent terms, so the spin degrees of freedom may be neglected here.
11|n`m〉 has parity (−1)`, while z has parity −1, so with ` = 0, we are integrating an odd function over all space.
12As in the non-degenerate case, we can ignore spin.
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By the Wigner-Eckart Theorem, 〈n`m|z|n′`′m′〉 vanish unless |`′− `| = 1 and |m′− m| = 0, so the only
non-vanishing terms are now 〈200|z|210〉 = (〈210|z|200〉)∗. So, we evaluate with z = r cos(θ):

〈200|z|210〉 =
∫ ∞

0

r2dr

∫ π

0

sin(θ)dθ

∫ 2π

0

dϕ [R20(r)Y
0
0 (θ, ϕ)]

∗r cos(θ)[R21(r)Y
0
1 (θ, ϕ)] = 3a0 (2.27)

In matrix form the perturbation is:

H ′ = −3a0eE


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (2.28)

Which may be diagonalized. Doing so, we find that the |21±1〉 states are unperturbed, while the other two
states are (|210〉 ± |200〉)/

√
2, with energies E(0)

2 ∓ 3a0eE .

We note that the states perturbed states have permanent dipole moments of:

d± = −∂E∓

∂E
= ∓3a0e (2.29)

2.3.2 Zeeman Effect

Sakurai 5.3

In this section only, we write electron mass me and magnetic quantum number m to avoid ambiguity.

Here we consider a Hydrogen atom in an applied magnetic field Bẑ, in which the momentum is the canonical
momentum p→ p− eA/c, so with the vector potential taken as A = B(−yx̂+ xŷ)/2, we have:

H =
1

2me

(
p− e

c
A
)2

− Ze2

r
(2.30)

With this vector potential, for Lz = xpy − ypx, and dropping the (eB/2c)2(x2 + y2)/2me term, we have:

H = H0 −
eB

2mec
Lz (2.31)

Generalizing this to include spin (with a g-factor of roughly 2), we have a perturbation:

H ′
B = − eB

2mec
(Lz + gSz) ≈ − eB

2mec
(Jz + Sz) (2.32)

Evaluating the expectation values 〈Jz〉 and 〈Sz〉, one finds that for:

∆EB = − eB

2mec

(
m~± m~

2`+ 1

)
(2.33)

2.3.3 Spin-Orbit Interaction

Sakurai 5.3

Since the electron is moving and there is an electric field, the electron experiences a magnetic field of
B⊥ ≈ −v ×E/c where the electric field is E = −(1/e)∇V . So with V = −Ze2/r and L = x× p, we suspect

9



a spin-orbit potential:

H ′
SO = − eg

2mc
S · −v

c
× E (2.34)

=
eg

2mc
S ·

[
p

mc
× x

r

1

e

d

dr

Ze2

r

]
(2.35)

=
gZe2

2m2c2
L · S
r3

(2.36)

This is nearly correct, but due to Thomas precession, g → g − 1:

H ′
SO =

(g − 1)Ze2

2m2c2
L · S
r3

(2.37)

We recall the Landé Interval Rule:

〈L · S〉 = ~2

2

{
` j = `+ 1

2

−(`+ 1) j = `− 1
2

(2.38)

It can be shown that: 〈
1

r3

〉
=

1

n3a30

1

`(`+ 1
2 )(`+ 1)

(2.39)

So we find:

∆ESO =
(g − 1)Ze2~2

4m2c2n3a30

1

`(`+ 1
2 )(`+ 1)

{
` j = `+ 1

2

−(`+ 1) j = `− 1
2

(2.40)

2.3.4 Spin-Orbit versus Zeeman

In a weak magnetic field, H ′
B << H ′

SO, there is spherical symmetry, so the operators J2, L2, S2, and Jz are
valid. Additionally, they form a complete set of commuting observables for our problem and they commute
with L · S as we note that for J = L+ S:

L · S = 1
2

[
J2 − L2 − S2

]
(2.41)

In a strong magnetic field, H ′
SO << H ′

B , spherical symmetry is broken and so J2 and L ·S are no longer good
quantum numbers (but Jz is). However, L2, S2, Lz, and Sz form a complete set of commuting observables
for our problem and they commute with Lz + gSz, so we may proceed with this CSCO.

We summarize in the following table:

Spin-Orbit or Zeeman?

Dominant
Small B H ′

SO

Large B H ′
B

10



2.4 Time Dependent Perturbation Theory
Sakurai 5.5, 5.7, 5.8

Here we consider Hamiltonians of the form:

H = H0 +H ′(t) (2.42)

With a time-dependent perturbation, there is no longer any particular Hamiltonian to diagonalize, so instead
we try to find the time evolution unitary U(t):

|ψ(t)〉 = U(t)|ψ(0)〉 (2.43)

Now, the eigenfunctions |n〉 and energy eigenvalues En of H0 are known, and we recall that if |ψ(0)〉 =∑
n cn|n〉, and H ′(t) = 0, then:

|ψ(t)〉 =
∑
n

cne
−iEnt/~|n〉 (2.44)

With U0(t) = e−iH0t/~, this is precisely the expression:

|ψ(t)〉 = U0(t)|ψ(0)〉 (2.45)

This suggests that we can write U(t) = U0(t)U
′(t). Recalling that the Schrödinger Equation also holds for

the time evolution operator, we have:

i~
∂U(t)

∂t
= H(t)U(t) (2.46)

Evaluating ∂tU(t) using the product rule and rearranging, we find:

i~
∂U ′(t)

∂t
= VI(t)U

′(t) (2.47)

Where we have defined:

VI(t) ≡ U†
0 (t)V (t)U0(t) (2.48)

This brings us to the Interaction Picture of Quantum Mechanics, wherein states and operators are trans-
formed from the Schrödinger Picture:

|ψ(t)〉I = U†
0 (t)|ψ(t)〉S (2.49)

AI(t) = U†
0 (t)ASU0(t) (2.50)

We see that the interaction picture is akin to the Heisenberg picture with H → H0.

2.4.1 Dyson Series

Now if we want to solve Eq. 2.47, we can apply 〈n| from the left and sum over a resolution of the identity,
with Vij = 〈i|H ′(t)|j〉 and ωij = (Ei − Ej)/~, and write in matrix form. This is rarely exactly solvable:

i~

ċ1ċ2...
 =

 V11 V12e
iω12t . . .

V21e
iω21t V22 . . .
...

...
. . .


c1c2...

 (2.51)

11



Alternatively, we may consider a modification to Eq. 2.47, where UI(t, t0) = U ′(t)U ′(t0)
−1, so we have:

i~
∂UI(t)

∂t
= VI(t)UI(t) (2.52)

Or as an integral equation, noting UI(t0, t0) = 1:

UI(t, t0) = 1− i

~

∫ t

t0

dt′ VI(t
′)UI(t

′, t0) (2.53)

Which suggests an iterative solution. To second order13:

UI(t, t0) = 1− i

~

∫ t

t0

dt′ VI(t
′) +

(
−i
~

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′ VI(t
′)VI(t

′′) (2.54)

Generalizing to an infinite product, we have for the time-ordering operator T :

UI(t, t0) = T exp

(
− i

~

∫ t

t0

dt′ VI(t
′)

)
(2.55)

Now, since there is no Hamiltonian per se for whose eigenstates solve the time-dependent problem, we instead
consider the transition probability between states |a〉 and |b〉 as a result of a time dependent perturbation
given by U :

Pa→b(t) = |〈b|U(t)|a〉|2 (2.56)

We note that UI captures the essential physics of the transition:

Pa→b(t) = |〈b|UI(t)|a〉|2 (2.57)

If we evaluate this for an initial state |a〉 to a final state |b〉 using the iterative solution above, we obtain for
ωba = (Eb − Ea)/~ and Vba(t) = 〈b|H ′(t)|a〉 the Dyson Series:

c
(0)
b (t) = δba (2.58)

c
(1)
b (t) = − i

~

∫ t

t0

dt′ eiωbat
′
Vba(t

′) (2.59)

c
(2)
b (t) = − 1

~2
∑
n

∫ t

t0

dt′
∫ t′

t0

dt′′ eiωbnt
′
Vbn(t

′)eiωnat
′′
Vna(t

′′) (2.60)

Note that the zeroth order term involves zero transitions (a→ a, the first order term involves one transition
(a→ b), and the second order term involves two transitions (a→ n→ b). The transitions a→ n and n→ b
are known as virtual transitions.

2.5 Constant Perturbation
Sakurai 5.7

Perhaps the simplest time dependence is a unit step function, θ(t), scaled to an amplitude V with the step
at t = 0:14

H ′(t) = θ(t)V (2.61)
13In general [VI(t1), V(t2)] 6= 0, so the order of the operators matters.
14V is an operator. It may be V 1 for a number V , or V may depend on other operators such as x, p, and s.
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This perturbation is relevant for understanding nuclear decay and driven qubit systems.

Now, we use the first order of the Dyson Series in Eq. 2.59:

c
(1)
b (t) = − i

~

∫ t

t0

dt′ eiωbat
′
Vba(t

′) =
Vba

Eb − Ea
(1− eiωbat) (2.62)

With algebra, we find:

|c(1)b (t)|2 =
4~2|Vba|2

ω2
ni

sin2(ωbat/2) (2.63)

2.5.1 Energy-Time Uncertainty Relation

Now, if we consider |c(1)b (t)|2(ω), we see a function peaked at 0. We plot, where blue is t = 0.5, orange is
t = 1, and green is t = 2:

The width of this peak depends on ∆t = t and on ∆E = ~ω = |Eb − Ea|, and in particular there is an
Energy-Time Uncertainty Relation:

∆E∆t < 2~ (2.64)

Near the time when the perturbation is turned on, the high frequency (high energy) components of the spec-
tral decomposition of the potential are important, while at longer times, only low frequencies are important.

2.5.2 Fermi’s Golden Rule

Considering the transition probability from a to b, with Ea = Eb, using Eq. 2.57 and Eq. 2.54, we find:

Pa→b(t) = |〈b|UI(t)|a〉|2 =
|Vba|2

~2
t2 (2.65)

This expression evidently breaks at large t, where P > 1. The solution to this problem is to consider a
continuum of states rather than discrete states.

Let us consider Eb ∼ Ea and take the limit where states are closely spaced: |En − En+1| << ~/t. In this
case, the probability of a transition from state a to one of the states with energy in the neighborhood of b is:

Pa→b = 4|Vba|2
∫

sin2(ωbat/2)

~2ω2
ba

ρ(E) dE
lim t→∞−−−−−−→ proportional to t (2.66)

Now, if we consider the transition rate, and evaluate the integral, we find Fermi’s Golden Rule:15

dPa→b

dt
=

2π

~
|Vba|2ρ(Eb) (2.67)

15Note that
∫+∞
−∞ dx sin2(x)/x2 = π.
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If we evaluate to second order in the Dyson series, we find that Fermi’s Golden rule becomes:

dPa→b

dt
=

2π

~

∣∣∣∣∣Vba +∑
n

VbnVna
En − Ea

∣∣∣∣∣
2

ρ(Eb) (2.68)

If we assume that there is exactly one state at Eb, then we take ρ(Eb) 7→ δ(E − Eb).

2.6 Harmonic Perturbation
Sakurai 5.7, 5.8

Another relevant time-dependent perturbation is the periodic perturbation:16

H ′(t) = V eiωt + V †e−iωt (2.69)

Evaluating the first order term of the Dyson Series, we find:

c
(1)
b (t) =

1

~

[
1− ei(ωba+ω)t

ωba + ω
Vba +

1− ei(ωba−ω)t

ωba − ω
V †
ba

]
(2.70)

This expression is almost exactly the same as that for the constant perturbation in Eq. 2.62, so we note
that at long times, |c(1)b (t)|2 is only appreciable is Eb ≈ Ea ± ~ω. The plus sign corresponds to absorption,
while the minus sign corresponds to stimulated emission.

Fermi’s Golden Rule 2.67 holds as above:
dPa→b

dt
=

2π

~
|Vba|2δ(Eb − (Ea − ~ω)) +

2π

~
|V †

ba|
2δ(Eb − (Ea + ~ω)) (2.71)

Noting that |Vba|2 = |V †
ba|2, we arrive at the expression for detailed balancing:

emission rate a→ b

density of states at b
=

absorption rate b→ a

density of states at a
(2.72)

2.6.1 The Classical Radiation Field

For a monochromatic plane wave with direction of propagation n̂ and k = |k|n̂ and linear polarization ε̂, the
vector potential is:

A(t) = A0

[
ei(k·x−ωt) + e−i(k·x−ωt)

]
ε̂ (2.73)

From this, it can be shown that:17

H(t) =
p2

2m
− e

mc
A(t) · p (2.74)

Which is precisely a harmonic perturbation. Now, the transition rate is (for absorption):

dPa→b

dt
=

2π

~
e2A2

0

m2c2
|〈b|eik·xε̂ · p|a〉|2 δ(Eb − (Ea + ~ω)) (2.75)

Noting that λradiation = 2π/|k| >> Ratom ∼ Z/137, we take the electric dipole approximation:

eik·x = 1 +O(k · x) (2.76)
16V is an operator. It may be V 1 for a number V , or V may depend on other operators such as x, p, and s.
17See Appendix A.
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So if x = x̂, we find

〈b|eik·xε̂ · p|a〉 = 〈b|px|a〉 (2.77)

=
m

i~
〈b|[x,H0]|a〉 (2.78)

= imωba〈b|x|a〉 (2.79)

2.6.2 Absorption Cross Section of Classical Radiation

The absorption cross section is, with average energy density of u = (|E|2 + |B|2)/16π.:

σabs(ω) =
energy absorbed (a→ b) by the atom per unit time

energy flux of radiation field
(2.80)

=
~ω(2π/~)
ω2A2

0/c

dPa→b

dt
(2.81)

=
~ω(2π/~)
ω2A2

0/c

2π

~
e2A2

0

m2c2
m2ω2

ba |〈b|x|a〉|2 δ(Eb − (Ea + ~ω)) (2.82)

=
ωba

ω

2π2e2

mc
fba δ(ω − ωba) (2.83)

Where we introduced the oscillator strength fba = 2mωba|〈b|x|a〉|2/~. It can be shown that:∑
b

fba = 1 (2.84)

So we have:

∫
σabs(ω)dω =

2π2e2

mc
(2.85)

We see that ~ has disappeared, and this is indeed the same result as in classical electrodynamics.
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3 Scattering
Sakurai Chapter 6

Scattering theory formulates a solution to the problem: if particles are initially far away from a potential,
they can be treated as free plane waves, |φk〉, but if they scatter off the potential, they will move in multiple
directions. What directions do they move, and what does the potential look like (what is its cross section?)

3.1 Lippmann-Schwinger Equation
Sakurai 6.1, 6.2

One approach is to treat the potential as varying with time, for η → 0+, where e−∞ = 0 and e0 = 1:

H ′(t) = V eηt (3.1)

To solve this problem, we use a Greens function technique. First we note the Schrödinger equation can be
written as: (

i~
∂

∂t
−H0

)
|ψ(t)〉 = H ′(t)|ψ(t)〉 (3.2)

Or with the Greens function G(t, t0):(
i~
∂

∂t
−H0

)
G(t, t0) = δ(t− t0) (3.3)

So the solution is for some wavevector k:

|ψk(t)〉 = |φk(t)〉+
∫
dt′ G(t, t′)H ′(t′)|ψk(t

′)〉 (3.4)

If we take G(t, t0) to be zero for t < t0, we can write:

G(t, t0) = − i

~
θ(t− t′)e−iH0(t−t′)/~ (3.5)

Inserting, we see:

|ψk(t)〉 = |φk(t)〉 −
i

~

∫ t

−∞
dt′ e−iH0t/~eiH0t

′/~V eηt
′
|ψk(t

′)〉 (3.6)

Setting t = 0, and letting |ψk(t)〉 = e−iEkt/~|ψk〉 and |φk(t)〉 = e−iEkt/~|φk〉, we find:

|ψk〉 = |φk〉 −
i

~

∫ 0

−∞
dt′eiH0t

′/~V eηt
′
e−iEkt

′/~|ψk〉 (3.7)

Evaluating the integral and rearranging, we find the Lippmann-Schwinger equation for ε = η~:

|ψk〉 = |φk〉 −
V

H0 − Ek − iε
|ψk〉 (3.8)

There are actually two |ψk〉 states, |ψ(+)
k 〉 corresponding to the distant past, and |ψ(−)

k 〉 corresponding to the
distant future. For these states, the Lippmann-Schwinger Equation is:

|ψ(±)
k 〉 = |φk〉 ±

V

Ek −H0 ± iε
|ψ(±)

k 〉 (3.9)
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3.1.1 Scattering Amplitude and Differential Cross Section

Using complex line integrals, see Appendix B, it can be shown that:

G±(r, r
′) =

〈
r

∣∣∣∣ ~2/2m
Ek −H0 ± iε

∣∣∣∣ r′〉 = − 1

4π

e±k|r−r′|

|r − r′|
(3.10)

It can then be shown, assuming that the potential is sufficiently localized to the origin that:

〈r|ψk〉 = 〈r|φk〉 −
2m

~2

∫
d3r′

1

4π

eik|r−r′|

|r − r′|
V (r′)〈r′|ψk〉 (3.11)

Which means we can express the state as an incoming plane wave and an outgoing spherical wave:

〈r|ψk〉 =
1

(2π)3/2

[
eik·r +

eikr

r
f(k, k′)

]
(3.12)

For a scattering amplitude defined as :

f(k, k′) = − 1

4π

2m

~2
(2π)3

∫
d3r′

(2π)3/2
e−ik·r′ V (r′)〈r′|ψk〉 (3.13)

= − 1

4π

2m

~2
(2π)3

∑
r′

〈k′|r′〉〈r′|V (r′)|r′〉〈r′|ψk〉 (3.14)

= − (2π)3

4π

2m

~2
〈k′|V (r)|ψk〉 (3.15)

The differential scattering cross section is:

dσ

dΩ
=

particles scattered into dΩ per unit time
particles incident on unit area per unit time

(3.16)

Now, if we recall the probability current operator J = (~/m) Im(〈ψ|∇|ψ〉), and for a probability flux through
area r2dΩ is proportional to |J |r2dΩ, we see:

dσ

dΩ
= |f(k, k′)|2 (3.17)

3.2 Born Approximation
Sakurai 6.3

(Valid for high incident energies V << ~2k2/2m)

In the first order Born approximation, the wavefunction is approximated as free:

〈r|ψk〉 7→ 〈r|φk〉 =
eik·r

(2π)3/2
(3.18)

The scattering amplitude is then (to first order Born approximation):

f (1)(k, k′) = −2m

~2
(2π)3

4π

∫
d3r′

e−ik′·r′

(2π)3/2
V (r′)

eik·r
′

(2π)3/2
(3.19)

= −2m

~2
1

4π

∫
d3r′ ei(k−k′)·r′V (r′) (3.20)
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With q = k − k′ for a spherically symmetric potential, we have:

f (1)(k, k′) = −2m

~2
1

4π

∫
d3r′ eiq·r

′
V (r′) (3.21)

= −1

2

2m

~2

∫ ∞

0

dr r2
∫ π

0

sin(θ)dθ eiqr cos(θ)V (r) (3.22)

= −2m

~2
1

q

∫ ∞

0

dr rV (r) sin(qr) (3.23)

3.2.1 Yukawa Potential

We can’t apply the above formula to the Coulomb potential directly since the integral of sin(qr) is not well
defined on an infinite interval. So we instead consider the Yukawa potential:18

V (r) = V0
e−µ2r

µ1r
(3.24)

We calculate the scattering amplitude in the first Born approximation:

f (1)(k, k′) = −2m

~2
1

q

∫ ∞

0

dr rV0
e−µ2r

µ1r
sin(qr) (3.25)

= −2m

~2
1

q

V0
µ1

∫ ∞

0

dr e−µ2r sin(qr) (3.26)

= −2m

~2
1

q

V0
µ1

1

2i

∫ ∞

0

dr e−µ2r(eiqr − e−iqr) (3.27)

= −2m

~2
V0
µ1

1

µ2
2 + q2

(3.28)

In the limit of the Coulomb potential:

f (1)(k, k′) = −2m

~2
ZZ ′e2

q2
(3.29)

So the differential cross section is, noting Ek = ~2k2/2m and q = 2k sin(θ/2):

dσ

dΩ
=

(
2m

~2
ZZ ′e2

q2

)2

(3.30)

=
1

16

Z2Z ′2e4

E2
k

1

sin4(θ/2)
(3.31)

Which is exactly the result the Rutherford obtained classically for the differential scattering cross section of
the Coulomb potential.

Now, an integration of the total scattering cross section diverges for the Coulomb potential, but we can
evaluate the total cross section of the Yukawa potential:

σ =

∫
dΩ

dσ

dΩ
=

(
2m

~2
V0
µ1

)2 ∫
dΩ

1

(µ2
2 + q2)2

(3.32)

=

(
2m

~2
V0
µ1

)2 ∫
dΩ

1

(µ2
2 + 4k2 sin2(θ/2))2

(3.33)

=

(
2m

~2
V0
µ1

)2
4π

µ2
2(4k

2 + µ2
2)

(3.34)
18As µ2 → 0 and V0/µ1 → ZZ′e2 the Yukawa potential becomes the Coulomb potential.
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3.2.2 Higher Order Born Approximations

Recall the Lipmann-Schwinger Equation:

|ψ(+)
k 〉 = |φk〉+

1

Ek −H0 + iε
V |ψ(+)

k 〉 (3.35)

Now introduce the transition operator T such that:

T |φk〉 = V |ψ(+)
k 〉 (3.36)

Which is equivalent to:

T = V + V
1

Ek −H0 + iε
T (3.37)

This has an iterative solution. We express T =
∑

n T
(n), where T (n) has n of the V operators. For example:

T (3) = V
1

Ek −H0 + iε
V

1

Ek −H0 + iε
V (3.38)

Now, we notice that the scattering amplitude is:

f(k, k′) =

∞∑
n=1

f (n)(k, k′) (3.39)

Where:

f (n)(k, k′) = 〈k′|T (n)|k〉 (3.40)

Keeping n terms of the T operator is known as the nth order Born approximation.

3.3 Partial Wave Approximation
Sakurai 6.4, 6.6

(Valid for strong potentials V >> ~2k2/2m)

The Laplacian in spherical coordinates is:

∇2f(r, θ, ϕ) =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂f

∂θ

)
+

1

r2 sin2(θ)

∂2f

∂ϕ2
(3.41)

We note that H0 = p2/2m commutes with L and Lz, and we write:

H0ψ = − ~2

2m

(
1

r

∂2

∂r2
(rψ)

)
+

L2

2mr2
ψ (3.42)

Now we can find normalized states |E`m〉 that satisfy:

H0|E`m〉 = E |E`m〉 (3.43)
L2|E`m〉 = `(`+ 1)~2 |E`m〉 (3.44)
Lz|E`m〉 = m~ |E`m〉 (3.45)
〈r|E`m〉 = RE`(r)Y

m
` (θ, ϕ) (3.46)
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Where RE` satisfy:

− ~2

2m

(
∂

∂r
r2
∂

∂r
+
`(`+ 1)

r2

)
RE`(r) = ERE`(r) (3.47)

The solutions RE` are the spherical Bessel functions j`(kr) and n`(kr), where k comes from E = ~2k2/2m.

For small x:

j`(x) =
x`

1 · 3 · 5 · · · · · (2`+ 1)
(3.48)

n`(x) =
1 · 3 · 5 · · · · · (2`+ 1)

x`+1
(3.49)

For large x:

j`(x) =
sin(x− `π/2)

x
(3.50)

n`(x) =
cos(x− `π/2)

x
(3.51)

So we find that:

〈r|E`m〉 = i`

~

√
2mk

π
j`(kr)Y

m
` (r̂) (3.52)

〈r|k〉 =
∑
`,m

〈r|E`m〉 ~√
mk

Y m
` (k̂)∗ (3.53)

Thence:

eik·r

(2π)3/2
=

∑
`

i`

(2π)3/2
(2`+ 1)P`(k̂ · r̂)j`(kr) (3.54)

3.3.1 Partial Wave Amplitudes and Phase Shifts

Now, T is a scalar operator, so we can use the Wigner-Eckart Theorem to find:

〈E′`′m′|T |E`m〉 = T``(E)δ``′δmm′δ(E − E′) (3.55)

The scattering amplitude is for f`(k) = −(π/k)T``(E):

f(k, k′) = − (2π)3

4π

2m

~2
〈k′|T |k〉 (3.56)

=
∑
`

(2`+ 1)f`(k)P`(cos(θ)) (3.57)

Additionally, we can show for sufficiently large r that:

〈r|ψ(+)
k 〉 = 1

(2π)3/2

[∑
`

i`(2`+ 1)P`(cos(θ))
ei(kr−`π/2) − e−i(kr−`π/2)

2ikr
+ (2`+ 1)f`(k)P`(cos(θ))

eikr

r

]
(3.58)
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Which amounts to showing that the effect of scattering an incident wave with quantum number ` is: 1 7→
1 + 2ikf`(k). Now, if we impose unitarity19, we see that this amounts to a phase shift of δ`:

e2iδ` = 1 + 2ikf`(k) (3.59)

This leads directly to f`(k) = eiδ` sin(δ`)/k, and thence:20

f(θ) =
∑
`

(2`+ 1)eiδ` sin(δ`)P`(cos(θ)) (3.61)

3.3.2 The Optical Theorem

The total cross section is, using the orthogonality of the Legendre polynomials:

σtot =

∫
dΩ |f(θ)|2 (3.62)

=
1

k2

∫
dΩ

∑
`,`′

(2`+ 1)(2`′ + 1)eiδ`eiδ`′ sin(δ`) sin(δ`′)P`(cos(θ))P`′(cos(θ)) (3.63)

=
4π

k2

∑
`

(2`+ 1) sin2(δ`) (3.64)

Now with cunning, we note:

Im(f(θ = 0)) =
1

k

∑
`

(2`+ 1)Im(eiδ`) sin(δ`)P`(cos(0)) (3.65)

=
1

k

∑
`

(2`+ 1) sin2(δ`) (3.66)

Comparing these results leads us to the Optical Theorem:

σtot =
4π

k
Im(f(θ = 0)) (3.67)

Which is true even in the absence of rotational symmetry.

3.3.3 Hard Sphere Scattering

We consider scattering from the hard sphere potential:

V (r) =

{
∞ r < R

0 R < r
(3.68)

The general solution outside of the sphere is for constants a` and b`:

〈r|ψ〉 =
∑
`

a`j`(kr)P`(cos(θ)) + b`n`(kr)P`(cos(θ)) (3.69)

19Physically, this means particles don’t accumulate in the scattering region. Mathematically, |1 + 2ikf`(k)| = 1.
20In practice phase shifts are calculated by matching boundary conditions, which for potential range R leads to:

tan(δ`) =
kRj′`(kR)− β`j`(kR)

kRn′
`(kR)− β`n`(kR)

where β` = kR

(
j′`(kR) cos(δ`)− n′

`(kR) sin(δ`)

j`(kR) cos(δ`)− n`(kR) sin(δ`)

)
(3.60)
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Where the boundary condition at r = R leads us to:

tan(δ`) =
j`(kR)

n`(kR)
(3.70)

Now, taking the low energy limit where kR << 1, and using Eq. 3.48, we see:

tan(δ`) = − (kR)2`+1

(2`+ 1)((2`− 1)!!)2
(3.71)

Which may be satisfactorily approximated by the ` = 0 term, so we have:

dσ

dΩ
=

sin2(δ0)

k2
≈ kR2

k2
= R2 (3.72)

So in this limit we find a total cross section of:

σtot =

∫
dΩ

dσ

dΩ
= 4πR2 (3.73)

3.3.4 Ramsauer-Townsend Effect and Bound States

As Sakurai writes: “unless the potential is strong enough to accommodate ` 6= 0 bound states near E = 0,
the behavior of the radial wavefunction must resemble j`(kr).” So, we consider low energy scattering from a
rectangular well or barrier:

V (r) =

{
V0 r < R

0 r > R
(3.74)

Where V0 < 0 is the attractive potential and V0 > 0 is the repulsive potential.

Matching boundary conditions for the attractive case, we find:

k′ cot(k′R) = k cot(kR+ δ0) (3.75)

Now, if we increase the strength of the potential until δ0 = π/2, the scattering cross section then becomes:

σ`=0 =
sin2(δ0)

k
= 0 (3.76)

This is the Ramsauer-Townsend effect and is observed in the scattering of electrons by noble gasses (ex.
argon, krypton, and xenon.)

Additionally, for an attractive potential, there may be bound states. For κ =
√

2m(E − V0)/~2, these states
have energy:

Eκ =
~2κ2

2m
= E − V0 ≈ −|V0| (3.77)

Now if we take the expression in Eq. 3.75, and take the limit of k → 0 (namely the first term of the taylor
expansions), we find:

k′ cot(k′R) =
k

k(R+ δ0/k)
(3.78)

Now, a = −δ0/k has units of length, and is in fact called the scattering length, since:

σtot =
4π

k2

0∑
`=0

(2`+ 1) sin2(δ`) =
4π

k2
sin2(ka) ≈ 4πa2 (3.79)
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3.4 Eikonal Approximation
Sakurai 6.5

Before, we considered the low energy relative to the potential limit: kR >> 1. Now we consider the opposite
limit.

We represent the state with action S, where ~ → 0 corresponds to the classical limit, by:

ψ =
√
ρ(x, t) eiS(x,t)/~ (3.80)

1‘

Now, we insert this wavefunction into the Schrödinger equation:

− ~2

2m
∇2ψ + V ψ = Eψ (3.81)

Or, upon substituting in the state:

− ~2

2m

[
∇2√ρ+ 2i

~
∇√

ρ · ∇S − 1

~2
√
ρ |∇S|2 + i

~
√
ρ ∇2S

]
+ V

√
ρ = E

√
ρ = i~

[
∂
√
ρ

∂t
+
i

~
√
ρ
∂S

∂t

]
(3.82)

Dropping the terms proportional to ~ or ~2, we find the Hamilton-Jacobi equation:

(∇S)2

2m
+ V = −∂S

∂t
(3.83)

For motion along the z-axis with impact parameter b, integrating, we find:

S

~
=

∫ z

−∞
dz̄

[
k2 − 2m

~2
V (

√
b2 + z̄2)

]1/2
+ constant (3.84)

Where the constant is selected so that S/~ → kz and V → 0. So we find that:

S(z, b) = kz − m

~2k

∫ z

−∞
dz̄ V (

√
b2 + z̄2) (3.85)

And substituting into Eq. 3.80, the wave function is:

〈x|ψ(+)
k 〉 = eikz

(2π)3/2
exp

[
− im

~2k

∫ z

−∞
dz̄ V (

√
b2 + z̄2)

]
(3.86)

Where the scattering amplitude is given by Eq. 3.13:

f(k, k′) = − (2π)3

4π

2m

~2

∫
d3x′

eik
′·x′

(2π)3/2
V (x′)〈x′|ψ(+)〉 (3.87)

Should we care to evaluate the scattering cross section for hard-sphere scattering in the Eikonal approxima-
tion, we would find that σtot = 2πR2.
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4 Miscellaneous Topics

4.1 The Variational Principle
Sakurai 5.4

We may want to find an upper bound on the energy of the ground state of a system. Such an upper
bound may be found without determining the ground state wavefunction by use of the variational principle.
Theorem: if |0̄〉 is any state, perhaps an approximation to the ground state eigenfunction |0〉 of a Hamiltonian
H, then:

E0̄ ≡ 〈0̄|H|0̄〉
〈0̄|0̄〉

≥ 〈0|H|0〉
〈0|0〉

≡ E0 (4.1)

Proof sketch: |0̄〉 =
∑N

n=0 cn|n〉, so 〈0̄|H|0̄〉 = |c0|2〈0|H|0〉+ |c1|2〈1|H|1〉+ . . . , and since the energies of the
exited states (n ≥ 1) exceed that of the ground state, 〈n|H|n〉 > 〈0|H|0〉, we have 〈0̄|H|0̄〉 > 〈0|H|0〉 (unless
c0 = 1 in which case |0̄〉 = |0〉).

In practice, the variational method is used by the following procedure:

1. Select a variational ground state wavefunction |0̄(λ)〉, parameterized by a parameter λ

2. Determine E0̄(λ) = 〈0̄(λ)|H|0̄(λ)〉/〈0̄(λ)|0̄(λ)〉

3. Find the extremal points where ∂λE0̄(λ) = 0

4. Determine which extremal point, if any, minimizes the variational ground state energy E0̄(λ)—this is
the variational upper bound to the ground state energy

As an example, consider an infinite square well described by:

V (x) =

{
0 |x| < a

∞ |x| ≥ a
(4.2)

The ground state wavefunction is:

|0〉 = 1√
a
cos

( π
2a
x
)

(4.3)

With energy:

E0 =
~2

2m

π2

4a2
≈ 4.9348

~2

4ma2
(4.4)

Now, consider the variational wavefunction (which satisfies the boundary conditions of the well):

|0̄(λ)〉 = |a|λ − |x|λ (4.5)

Upon summing the kinetic and potential (0) energy, we find:

E0̄(λ) =
(λ+ 1)(2λ+ 1)

2λ− 1

~2

4ma2
(4.6)

The extremal points are at:

λ± = 1
2 (1±

√
6) (4.7)
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While λ− corresponds to a lower energy than λ+, it does not represent a valid wavefunction since |0̄(λ−)〉
∣∣
x=0

=
−∞, so we use λ+ to find the variational energy:

E0̄(λ+) =
5 + 2

√
6

2

~2

4ma2
≈ 4.9495

~2

4ma2
(4.8)

This is accurate to within 0.3%, and we see that the variational wavefunction (orange) is very close to the
exact ground state wavefunction (blue):

4.2 The Geometric Phase
Sakurai 5.6

4.2.1 Sudden and Slow Changes

For systems with sudden changes, the state has no time to evolve even as eigenfunctions change.

Ex. a rectangular box is divided by a thin partition of infinite potential and the partition is suddenly
removed. With the sudden change, even if the initial wavefunction is an eigenstate, it has no time to change
so it stays the same, and consequently becomes a linear combination of the new eigenstates.

Alternately, systems may change very slowly. In this case if the changes preserve the separation between
states, the nth eigenstate of the initial system evolves into the nth eigenstate of the final system provided
the eigenstates are gapped. This is the Adiabatic Theorem.

Ex. a rectangular box is gradually extended in the x direction. With the gradual change, eigenstates stay
as eigenstates.

4.2.2 The Geometric Phase

Pancharatnam and Longuet-Higgins showed that in addition to the dynamic phase, θn = −(1/~)
∫ t

0
dt′En(t),

there is also a geometric phase, γn, associated with state evolution. Let the state be, where cn(t) corresponds
to the usual time evolution and |n(t)〉 corresponds to the changing eigenstates:

|ψ(t)〉 =
∑
n

cn(t)e
iθn(t)|n(t)〉 (4.9)

We recall the Schrödinger equation:

i~
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉 (4.10)

Evaluating the Schrödinger equation, taking care to use the product rule, and applying 〈m(t)|, we find:

ċm(t) = −
∑
n

cn(t)e
i(θn(t)−θm(t))〈m(t)|∂t|n(t)〉 (4.11)
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From the eigenvalue relation H(t)|n(t)〉 = En(t)|n(t)〉, we find by differentiating and applying 〈m(t)| that:

〈m(t)|Ḣ|n(t)〉 = (En(t)− Em(t))〈m(t)|∂t|n(t)〉 (4.12)

Or:

ċm(t) = −cm(t)〈m(t)|∂t|m(t)〉 −
∑
n

cn(t)e
i(θn(t)−θm(t)) 〈m(t)|Ḣ|n(t)〉

En − Em
(4.13)

In the adiabatic approximation where 〈m(t)|Ḣ|n(t)〉/(En − Em) << Em/~, we have:

ċm(t) = −cm(t)〈m(t)|∂t|m(t)〉 (4.14)

Which leads us to an expression for geometric phase factor (which like θn is a real number):

γn(t) = i

∫ t

0

dt′ 〈n(t′)|∂t′ |n(t′)〉 (4.15)

Where:

cn(t) = eiγn(t)cn(0) (4.16)

So we have:

|ψ(t)〉 =
∑
n

cn(t)e
iγn(t)eiθn(t)|n(t)〉 (4.17)

Whose use is limited by our knowledge of |n(t)〉.

4.2.3 Berry’s Method for Calculating the Geometric Phase

Berry showed21 that for a system that evolves around a closed loop, if we assume the time dependence of
the Hamiltonian is represented by a vector of parameters R(t), then:

〈n(t)|∂t|n(t)〉 = 〈n(t)|∇R|n(t)〉 ·
dR

dt
(4.18)

Thence, through a change of variables, integrating around a closed loop l:

γn(l) = i

∮
l

〈n(t)|∇R|n(t)〉 · dR (4.19)

Letting An(R) = i〈n(t)|∇R|n(t)〉, and using Stokes theorem, we find the line integral around the loop is
equal to an area integral over the enclosed surface:

γn(l) =

∮
l

An(R) · dR =

∫
(∇R ×An(R)) · da (4.20)

Evidently, Bn(R) = ∇R × An(R) is a flux, and we see that the geometric phase γn(l) is the same for all
closed loops that encompasses the same total flux. In fact, even if we introduce an arbitrary phase factor
|n(t)〉 7→ eiδ(R)|n(t)〉, γn is unchanged. So γn only depends on the flux enclosed by the path.

Combining the results above and simplifying, the geometric phase can be calculated using the identities:

γn(l) =

∫
Bn(R) · da (4.21)

Bn(R) = i
∑
m6=n

〈n(t)|∇RH|m(t)〉 × 〈m(t)|∇RH|n(t)〉
(En − Em)2

(4.22)

21M. V. Berry, Quantal Phase Factors Accompanying Adiabatic Changes, Proc. Roy. Soc. (London), A392 (1984).
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Appendix A Review of Electromagnetic Waves
Maxwell’s equations are:

∇ · E = 4πρ (A.1)

∇× E = −1

c

∂B

∂t
(A.2)

∇ ·B = 0 (A.3)

∇×B =
4π

c
I +

1

c

∂E

∂t
(A.4)

In the absence of currents and charge distributions:

∇ · E = 0 (A.5)

∇× E = −1

c

∂B

∂t
(A.6)

∇ ·B = 0 (A.7)

∇×B =
1

c

∂E

∂t
(A.8)

Which lead to the wave equations for f ∈ {E,B}:

∇2f =
1

c2
∂2f

∂t2
(A.9)

We consider the solutions that are monochromatic plane waves with linear polarization ε̂ and direction of
propagation n̂, with ε̂E · k = ε̂B · k = 0 and k × ε̂E = |k|ε̂B , for k = |k|n̂ and |k| = ω/c:

E = E0e
i(k·x−ωt)ε̂E (A.10)

B = B0e
i(k·x−ωt)ε̂B (A.11)

We can also express this in terms of the vector potential, where B = ∇×A, and with φ = 0, E = −(1/c)∂tA:

A = A0

[
ei(k·x−ωt) + e−i(k·x−ωt)

]
ε̂ (A.12)

The Hamiltonian for this system is:

H(t) =
1

2m
(p− (e/c)A)2 + eφ(x) (A.13)

=
p2

2m
− e

2mc
(A · p+ p ·A) + e2

2mc2
|A|2 + eφ(x) (A.14)

We have φ(x) = 0. Since k ·A = 0 and ∇·A = 0, A · p = p ·A and we can neglect the |A|2 term. So we have:

H(t) =
p2

2m
− e

mc
A · p (A.15)

Which is ripe for the application of time-dependent perturbation theory.
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Appendix B Review of Complex Line Integrals
A function f(z) is analytic on a domain D iff it has a Laurent series (power series with negative terms) that
converges on D:

f(z) =

∞∑
n=−∞

anz
n (B.1)

The residue of a function f(z) at z0 is:22

Res[f(z), z0] = a−1 (B.2)

Rule 1: if f(z) is non-zero and analytic at z0, then:

Res

[
f(z)

(z − z0)n
, z0

]
=
f (n−1)(z0)

(n− 1)!
(B.3)

Rule 2: if f(z) and g(z) are analytic at z0 and if g(z) has a simple zero23 at z0, then:

Res

[
f(z)

g(z)
, z0

]
=
f(z)

g′(z)
(B.4)

The Residue Theorem states that for any (counter-clockwise oriented) closed loop γ in which there are a set
of isolated singularities {zj}, the line integral around γ is:∮

γ

f(z)dz = 2πi
∑
j

Res[f(z), zj ] (B.5)

A useful form of the Residue Theorem is the Cauchy Integral Formula. If f(z) is analytic at z0, then for any
(counter-clockwise oriented) closed loop γ that encloses z0:

f(z0) =
1

2πi

∮
γ

f(z)

z − z0
dz (B.6)

More generally:

f (n)(z0) =
n!

2πi

∮
γ

f(z)

(z − z0)n+1
dz (B.7)

Now, suppose that we define a loop γ as a semicircle in the upper half plane bounded by the interval [−R,R].
If there are singularities, {zj}, in the loop, a line integral around the loop will accumulate their residues,
while in many cases it can be shown that the line integral along the arc is zero as R → ∞. This allows us
to compute integrals along the real line using the Residue Theorem. In particular, if P (x) and Q(x) are
polynomials and deg(Q) ≥ deg(P ) + 2, then:∫ ∞

−∞
dx

P (x)

Q(x)
= 2πi

∑
j

Res

[
P (z)

Q(z)
, zj

]
(B.8)

For the same requirements, we have for real k > 0:∫ ∞

−∞
dx

P (x)

Q(x)
eikx =

2πi

ek

∑
j

Res

[
P (z)

Q(z)
, zj

]
(B.9)

22Residues can be evaluated by WolframAlpha and Mathematica using Residue[f[z],{z,z0}].
23A zero of f(z) at z0 is simple iff f ′(z0) 6= 0.
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