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Motivation
Conduction onmicroscopic scales behaves vastly differently than for larger sizes.
A cornerstone themicroscopic theory of solids is the QuantumHall Effect, where
with perpendicular electric and magnetic fields, the conductivity, σ, transforms
from a continuous variable to a discrete variable σ = c · e2/2π~, for integers c.
These integers are known as the Chern numbers, and are determined from the
electronic band structure. Depending on physical conditions, such as a change
in electric or magnetic field, the Chern number for a system may change. This
change is a phase transition, and like transitions between states of matter, the
rate of transition may be described by a critical exponent, ν.

Here, we present a background on microscopic electronic behavior. Next, we
develop a class of bound electron models. Finally, we find their Chern numbers
and critical exponents by way of determining electronic band structures.

Background

Itwasexpected fromthequantumtheory that aHall Experiment (a current in a two
dimensional material with a perpendicular magnetic field), would exhibit a linear
transverse resistivity, ρ = σ−1, but experiments revealed a structure of plateaus:
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Hall Bars are used to study electric
properties of two dimensional mate-
rials in electric and magnetic fields.

Transverse resistivity plateaus
at Landau Levels; longitudinal
resistivity peaks at transitions.

Nature strives to minimize energy, yet fermions such as electrons cannot ”con-
dense” to the ground state (because of the exclusion principle), so electrons build
up to a highest occupied energy level known as the Fermi Energy. Electrons con-
duct at the lowest unoccupied energy level (at the Fermi Energy in conductors):
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The energy gap present in the bulk
of a sample disappears near edges
where "edge states" conduct left or
right handed wrt the magnetic field.
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An edge state conducting
right adds one, and an edge
state conducting left removes
one from the Chern number.

Around the center of each energy band, such as a Landau Level, in the presence
of disorder, electrons may conduct. This region is known as the mobility edge:

Electrons only conduct
at the mobility edge:
higher energy electrons
loop on hilltops, lower
energy electrons loop in
valleys. Past a critical
level of disorder, even
mobility edge electrons
can no longer move.

Conductivitymay be rephrased in terms of the distance an electron is localized to.
Picturing themobility edge of an energy band as a collection of contours and sad-
dles, this ”localization length” may be determined through numerical simulation:

Strip models consider
electronic systems that
are much longer than
they are wide. Localiza-
tion is inversely related
to transmission: ξ∝1/T
with T ≡ T1T2 ...TN T1 T2 T3 T4 T5 T6 T7 T8

Methods
Quantummechanics postulates that all information on the state of a system is
contained by a vector |ψ〉, known as the wavefunction. Inner products extract
the system information. We are interested with position in particular, so, for
the systemof four wellsm = 1, 2, 3, 4, shown at right, 〈m|ψ〉 gives the probabil-
ity amplitude that the particle is in them-th well. Supposing that the particle
is in the m-th well, we may move it right or left using a translation operator,
T±x|m〉 = |m ± 1〉, or let it be, T0|m〉 = |m〉. The translation operators are
sums over outer products weighted by the transfer integrals t:

Tx = −
∑
m

tx|m+1〉〈m|, T0 = −
∑
m

t0|m〉〈m|, T−x = −
∑
m

tx|m〉〈m+1|

The Hamiltonian, a matrix of the possible configurations and motions, is the
sum of the translation operators here, which is for a two-dimensional lattice:

H = T0 + T1 = T0 + Tx + T−x + Ty + T−y
This Hamiltonian is a ”tight-binding” Hamiltonian, which alludes to the sepa-
rate wells,m, that the particle is ”bound” to. The translation operators provide
a formalism for conduction. Yet, in numerical simulations, only finite size
systems may be studied, so boundary conditions must be specified. A simple
and physically justified boundary condition is that of periodic boundaries.

With the Hamiltonian and its boundary conditions, the band geometries may
be determined throughmatrix diagonalization. From this, the Chern numbers
may be determined with some computation. Similarly, the localization length
may be determined using the transfer matrix formalism andQR-factorization.

Top: one-dimensional potential with four wells separated by barriers

Middle: translation operators can describe the motions of a particle

Bottom: periodic boundary conditions are illustrated with connection
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Chern Numbers and Band Geometries
The Chern Number may be calculated as a momentum-space integral over the Brillouin zone over the Berry curvature.
The Berry curvature, or field strength, may be calculated from the Berry connectionA(k). Where the Berry connection,
is found from thewave functions |n(k)〉of then-th energy band. An efficient algorithmby Fukui et. al. was implemented.

Ai(k) =

〈
n(k)

∣∣∣∣ ∂∂ki
∣∣∣∣n(k)〉 ; F (k) =

∂

∂k1
A2(k)−

∂

∂k2
A1(k); cn =

1

2πi

∫
BZ

d2k F (k)

Top Row: energy band
structures for four related
models of Chern Insulators.
Note which are delocalized.

Bottom Row: Berry Cur-
vatures for the structures.
The Chern numbers are
0, 1,−1, and 0 respectively.

Critical Exponents and Phase Transitions

The localization length, ξ, is defined by ||ψ|| ∼ exp(|x − x0|/ξ),
where thedecayingexponential bounds thewavefunction. The
localization length may be found from transfer matrices T , by
QR-factorization, using the method of Lyapunov Exponents:

L∏
l=1

Tl = QL

L∏
l=1

Rl; γl = ln |Rl(1, 1)|; γ =
1

L

L∑
l=0

γl; ξ =
1

|γ|

The critical exponent for may be found at the critical point:

ξ
∣∣θ∼θc
M=∞(θ) ∝ A|θ − θc|−ν

Localization length for system widths M in the Chalker-
Coddington strip model. Interpolation finds a critical
exponent of ν = 2.36, in agreement with experiments
and literature. Methods work for tight-binding models.

Conclusions
The Quantum Hall Effect provides valuable theoretical
insights into our world, and serves as a model system to
develop and test theoretical and numerical techniques.
Here, computational modules were developed to nu-
merically determine electronic band structures, berry
curvatures, Chern numbers, localization lengths, and
critical exponents for tight-binding and related models,
with application to the Quantum Hall Effect. Results
obtained were in good agreement with experiments and
the literature.

Future research directions may include extending these
methods and applying thesemodules to other models of
electronic behavior, such as those of next-nearest neigh-
bor interactions, higher Landau Levels, or to other sys-
tems such as Chern Insulators or Weyl Semimetals.
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