Efficient Unitary Method for Simulation of Driven Quantum Information Systems

APS Far West Conference, Stanford UniversitySpenser Talkington, and HongWen Jiang (UCLA)2 November 2019

Motivation: Quantum Information

- Qubits
 - Two-state systems, with $|0\rangle$ and $|1\rangle$
 - Information is $|\psi(t)\rangle = c_0(t)|0\rangle + c_1(t)|1\rangle$
- Example degrees of freedom
 - Spin, $|S_z^+\rangle$ and $|S_z^-\rangle$
 - Charge, |Left> and |Right>

Motivation: Quantum Control

1. Encoding

- Drive the system into a desired state
- 2. Storage
 - Account for time-evolution of state while encoded
- 3. Readout
 - Measure transconductance as driven to readout state
- Ex. Drive a charge qubit by varying gate voltages

Schoenfield, et al. Nat. Commun. 5, 64 (2017)

Background: Larmor Precession

• Ex. spin-1/2 particle with gyromagnetic ratio γ in a magnetic field $\mathbf{B} = B \hat{\mathbf{z}}$

$$H = \gamma B \sigma_z, \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• Mathematically similar to any two-state system with splitting 2ϵ and tunneling Δ

$$H = \varepsilon(t)\sigma_z + \Delta\sigma_x$$

Experimental Considerations

- Charge-based semiconductor quantum dot qubits
- Benefit
 - Existing materials science technology
- Complicating factors
 - Device geometry, ex. dot location
 - Pulse generation, ex. multiple gates, physical constraints
 - Material properties, ex. pseudospin states
- Need more complex H(t) and $\varepsilon(t)$ to model system

Image credit: J.D. Rooney

Simulation of Driven Quantum Systems

- Density matrix evolution
 - Dominant method used in quantum information
 - Solve $\partial_t \rho(t) = -i[H(t), \rho(t)]/\hbar + (\text{other terms})$, using RK4 or similar
 - Robust and extensible but slow, e.g. **1 hour** for one 100x100 image
- Unitary time evolution
 - Uncommonly used in quantum information
 - Compute the time evolution operator U(t) for $|\psi(t)\rangle = U(t)|\psi(0)\rangle$
 - Fast but more focused, e.g. **30 sec** for one 100x100 image

Assumptions for Unitary Method

- 1. Energy is conserved in the system
- 2. Particle number is conserved
- 3. Hamiltonians at different times commute
- On short time scales, environmental coupling (1) and relaxation (2) are less important, so these assumptions are reasonable

Computational Method

• Begin with the expression:

$$U(t) = \exp\left[-\frac{i}{\hbar}\int_{0}^{t} dt' H(t')\right]$$

• Discretize time from 0 to t in N intervals with $t_n \in \{t_0, t_1, ..., t_N\}$, letting $\Delta t_n = t_n - t_{n-1}$, we approximate the operator:

$$U(t) = \prod_{n=0}^{N} \exp\left[-\frac{i}{\hbar}\Delta t_n H(t_n)\right]$$

• With carefully chosen t_n we can compute this quickly and accurately

Optimization

- 1. If a region is time-independent, calculate that region in one step
- 2. If we are interested in the time evolution of an expectation value, proceed iteratively:

$$|\psi(t_n)\rangle = U(t_n, t_{n-1})|\psi(t_{n-1})\rangle$$

1. If driving features repeat, separate and store these features. Ex:

$$U_{\text{total}} = U_{\text{readout}} U_{\text{storage}} U_{\text{encode}}$$

Speed Comparison

- Compare our method (in Python) to the Python module QuTiP for a variety of driving pulses, as used to make images of oscillations
- This plot underestimates the speedup of the unitary methods by approximately a factor of 5 over the density matrix methods (due to different accuracies)

Comparison of Numerical Evolution Methods (3-state trapezoid pulse coherent oscillations)

Ex 1. QD Qubit with Pseudospin States

- (a) QuTiP took 6 hours
- (b) Unitary method took 3 mins
- Hamiltonian from Z. Shi, et al., Nat. Commun. **5**, 3020 (2014)

Ex 2. QD Qubit with Two-Axis Driving

- 200 images in 3 hours
- Hamiltonian from Penthorn, et al. () Quantum Inf., accepted (2019)

Talkington, and Jiang. arXiv:1909.02532.

With Faster Simulations...

- Experiment
 - Explain results more quickly and explore parameter spaces
 - Can study other systems too, ex. spin qubits, superconducting qubits, etc.
- Theory
 - Exploration of diabatic transitions that have no exact solution (Landau-Zener)
 - Study periodically driven systems (Floquet systems)

Acknowledgements

- We thank our group members N.E. Penthorn, J.D. Rooney, T.J. Wilson, K. Shure, N. Rajapakse, and J.S. Schoenfield
- ST is grateful to the UCLA Physics Department for their support and funding through their summer REU program
- HWJ and the group are supported by US ARO through Grant W911NF1410346

Questions?

Additional slides

Charge-Based Quantum Dot Qubits

• Discarding all but the charge-tunneling degrees of freedom yields a 4x4 Hamiltonian for time-evolution

The charge-tunneling Hamiltonian

Driving with Pulses

 Systems are driven by electric pulses

 $U_{site} = qE_{site}$

• Optimizations are possible in the unitary regime assuming forms of the driving pulse

Evolution of Quantum States

Density Matrices

• Solve a differential equation

A density matrix, ρ has $tr(\rho) = 1$, in particular, for states $|\psi_i\rangle$, and positive real numbers p_i :

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle \langle \psi_{i}|$$

The von Neumann equation gives time evolution:

$$\dot{
ho} = -rac{i}{\hbar}[H,
ho]$$

There are other useful properties and applications of density matrices, but they are not relevant here.

Unitary Evolution

• Evaluate an integral

When particle number $\langle \psi | \psi \rangle$ is conserved, quantum states evolve with a unitary time-evolution operator:

$$\left|\psi(t)\right\rangle=\mathscr{U}(t,0)\left|\psi(0)\right\rangle$$

So long as Hamiltonians of different times commute the time-evolution unitary may be found using the formula:

$$\mathscr{U}(t,0) = \exp\left[-\frac{i}{\hbar}\int_0^t d\bar{t} \ H(\bar{t})\right]$$

Simulation of Driven Quantum Systems

- Density matrix evolution through differential equation solving is the dominant method used in quantum information
 - Solve $\partial_t \rho(t) = -i[H(t), \rho(t)]/\hbar + (\text{other terms})$, using RK4 or similar
 - (+) robust, it works for many systems with little code modification needed
 - (+) extensible, e.g. to systems with relaxation and coupling to environment
 - (-) slow, e.g. **1 hour** for one 100x100 image
- Unitary time evolution
 - Compute the time evolution operator U(t) for $|\psi(t)\rangle = U(t)|\psi(0)\rangle$
 - (-) delicate, more code modification is often necessary to be faster than dm
 - (-) focused, only practical for certain systems and driving behaviors
 - (+) fast, e.g. **30 sec** for one 100x100 image

Assumptions for Unitary Method

- Energy is conserved in the system, so no coupling to the environment
- Particle number is conserved, i.e. $H^{\dagger} = H$, so no relaxation of states
- Hamiltonians at different times commute, $[H(t_i), H(t_j)] = 0$
- These are often reasonable assumptions
 - On short time frames environmental noise and relaxation are less important
 - We can still make quantitative predictions for encoding states, and predict the period (but not amplitude) of stored states. Readout results are less reliable.

Time Complexity

Pulse	Matrix Exponentials	$Calculated^{a}$	$Measured^{b}$
Square	N^2	$4 \sec$	$7 \mathrm{sec}$
Trapezoid	$N^2 + N(t_r + t_f)/\tau$	$84 \sec$	$98 \sec$
$\operatorname{Ramp}/\operatorname{Sine}$	$N(t_{ m max}/ au)$	1280 sec	$1306~{\rm sec}$
$\operatorname{Arc}/\operatorname{Noise}$	$N^2(t_{\min}+t_{\max})/2\tau$	68000 sec	$73648~{\rm sec}$

Coherent Oscillations

Background: Larmor Precession (Oscillations)

• Ex. A spin-1/2 particle with gyromagnetic ratio γ in a magnetic field $\mathbf{B} = \|\mathbf{B}\| \hat{\mathbf{z}}$

$$H = \gamma \| \mathbf{B} \| \sigma_z$$
, where, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

- We find $\langle S_{\chi} \rangle$ and $\langle S_{\chi} \rangle$ oscillate in time
- Mathematically similar to any two-state system with splitting ϵ and tunneling Δ

 $H = \varepsilon(t)\sigma_z + \Delta\sigma_x$

Both exhibit "coherent oscillations"

Optimization

- 1. If a region is time-independent, calculate that region in one step
 - 1. Ex. The storage region in a trapezoidal driving pulse
 - 2. Ex. The step regions in a two-axis driving pulse
- 2. If we are interested in the time evolution of an expectation value, proceed iteratively: $|\psi(t_n)\rangle = U(t_n, t_{n-1})|\psi(t_{n-1})\rangle$
 - 1. Ex. Plotting $\langle S_{\chi} \rangle$ as a function of time for $\mathbf{B}(t) = B \hat{\mathbf{z}}$ in Larmor precession
 - 2. Ex. Plotting $\langle 0 \rangle$ as a function of time for $\varepsilon(t)$ with no evolution at readout
- 3. If driving features repeat, separate and store these features. Ex:

 $U_{\text{total}} = U_{\text{readout}} U_{\text{storage}} U_{\text{encode}}$