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Motivation

Critical exponents describe system
behavior near phase transitions
(ex. conductivity)
Metal-Insulator transitions in the
presence of disorder lead to the
Quantum Hall Effect in 2D
The IQHE plateau transition
critical exponent is 2.3 – 2.6, but
the value is contested
No analytic model → numerics
Two approaches to answer this:

1 Vary the models and parameters
(ex. next nearest neighbor)

2 Investigate larger systems
Figure: Transverse and Hall resistance in an InAs sample.
From Zverev, et al, J. Appl. Phys. 96, 6353 (2004).
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2D Square Lattice

Sites are |`,w〉
Sites are orthogonal
|ψ〉 =

∑
`,w C`,w|`,w〉

` ranges from 1 to L
w ranges from 1 to W
Cylindrical geometry
Lattice constant is 1
We consider L >> W
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Figure: The 4th site in the `th cell, |`, 4〉, is highlighted
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Tight-Binding Hamiltonians
General form:

H = T + V =⇒ H =
∑
sites

(
onsite + transfer interactions

)
Anderson Model: Anderson, Phys. Rev. 109, 1492 (1958)

H =
∑
`,w

ε`,wc†`,wc`,w︸ ︷︷ ︸
onsite potential

+ t(c†`,w+1 + c†`,w−1 + c†`+1,w + c†`−1,w)c`,w︸ ︷︷ ︸
nearest-neighbor transfer

Hofstadter Model: Hofstadter, Phys. Rev. B 14, 2239 (1976)

H =
∑
`,w

ε`,wc†`,wc`,w︸ ︷︷ ︸
onsite potential

+ t(c†`,w+1 + c†`,w−1)c`,w︸ ︷︷ ︸
NN intra-cell transfer

+ t(e−i2πα`c†`+1,w + e+i2πα`c†`−1,w)c`,w︸ ︷︷ ︸
NN inter-cell transfer (accumulates a phase!)
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Transfer Matrices

The transfer matrix T` “transfers” the state in cell ` the state in cell `+ 1
Define the state of cell ` to be |`〉 = |`1, `2, . . . , `W 〉, where |`w〉 ≡ |`,w〉(

`+ 1
`

)
= T`

(
`

`− 1

)
One way to construct transfer matrices is to use the Time Independent Schrödinger
Equation, H |`〉 = E |`〉, substituting for H , and rearranging to the desired form
Two transfer matrices are, for H̄` = H` − (inter-cell transfer)

Tanderson
` =

1
t

(
E1 − H̄` −t1

t1 0

)
; Thofstadter

` =
1

te−i2πα`

(
E1 − H̄` −te+i2πα`1
te−i2πα`1 0

)
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Electronic Localization Length and Conductivity (1 of 3)

Anderson Localization of electrons in the presence of disorder, assuming the wave function
is centered at |`0,w〉, where C`,w = 〈`,w|`,w〉, and ξw is the “localization length”

C`,w ≈ C`0,w exp(−|`− `0|/ξw)

In Ergodic Theory, the Lyapunov Exponent γ, describes the divergence in phase space of
two trajectories Z with initial separation δZ(t0) as |δZ(t)| ≈ exp(γ|t − t0|)|δZ(t0)|
If we take γ → −γ representing convergence of trajectories rather than the divergence,
consider the separation from the zero trajectory, and rename t → `, t0 → `0, then:

C`,w ≈ C`0,w exp(−γw|`− `0|)

(a) Extended state (b) Localized state in envelope, ξ = 1/γ.
Lee and Ramakrishnan, Rev. Mod. Phys 57, 287 (1985).
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Electronic Localization Length and Conductivity (2 of 3)
The best approximation to γw occurs at large |`− `0|, so we consider ` = L and `0 = 1
Now, Oseledets Theorem1 states that there exists an asymptotic matrix Γ whose
eigenvalues are {e±γ1 , e±γ2 , . . . , e±γW }, where in our case Γ is defined by:

Γ = lim
L→∞

( 1∏
`=L

T †
`

L∏
`=1

T`

)1/2L

By QR decomposition into orthogonal matrix Q and upper triangular matrix R, we have:
L∏

`=1
T` = QL

L∏
`=1

R` =⇒ Γ = lim
L→∞

( L∏
`=1

R`

)1/L

The eigenvalues of R are on the diagonal, so by algebra we have:

γw =
1
L

L∑
`=0

ln |Rw,w
` |

1V. Oseledets, Trans. Moscow Math. Soc. 19, 179 (1968)
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Electronic Localization Length and Conductivity (3 of 3)
The most conducting state will dominate the
conductivity, so we name a single localization
length for a strip of width W as ξW = max(ξw).
The localization length of the infinite system is
found by collapsing ξW to a function f (x) that
fulfills the finite size scaling (FSS) hypothesis,
f (x) = 1/x, x >> 1 and f (x) = const, x << 1:

ξW
W

= f
(

W
ξ∞

)
This localization length diverges around Ec as:

ξ∞(E) ∝ |E − Ec|−ν
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Localization Length in the Anderson Model

Localization length is attenuated
at high disorder
Symmetric about particle energy
E = 0
For disorder strength 1, FSS
analysis yields ν = 1.00, however
we believe this is not a true
divergence and that larger
system lengths are needed to
yield quantitatively accurate
results
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Localization Length in the Hofstadter Model

Localization length is attenuated
at high disorder
Localization length is suppressed
at energies away from three
energies where localization
length diverges for each disorder
strength
Symmetric about particle energy
E = 0
For disorder strength 1, ν = 2.47
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Localization Length in the Next-Nearest Neighbor Anderson Model

Localization length is attenuated
at high disorder
Asymmetric in particle energy
Large system lengths are needed
to yield quantitatively accurate
results
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Localization Length in the Next-Nearest Neighbor Hofstadter Model

Localization length is attenuated
at high disorder
Localization length is suppressed
at energies away from two
energies where localization
length diverges for each disorder
strength
Asymmetric in particle energy
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Results

Qualitative behavior varies significantly depending on the next-nearest neighbor hopping
Quantitatively, we find ν = 2.47 ± 0.09 for uniform disorder with strength of the hopping,
but this value is non-universal and depends on the disorder strength and the Landau level

Spenser Talkington, Rahul Roy (University of California, Los Angeles (UCLA))Localization in Two-Dimensional Trivial and Chern Insulators March 2, 2020 13 / 14



Acknowledgments

We thank our group members Dominic Reiss, Pratik Sathe, Xu Liu, and Fenner Harper.
ST is grateful to the APS for the Future of Physics travel grant, and to the UCLA
Undergraduate Research Center and the Clay Foundation for their support and funding.

Spenser Talkington, Rahul Roy (University of California, Los Angeles (UCLA))Localization in Two-Dimensional Trivial and Chern Insulators March 2, 2020 14 / 14


