Mechanics

Forces change the momentum:

$$
\vec{F}=\frac{d \vec{p}}{d t}=m \vec{a}=m \frac{d \vec{x}}{d t}
$$

Forces can come from potentials:

$$
\vec{F}=-\vec{\nabla} U
$$

Which is equivalent to the work:

$$
U=-\int_{\ell} d \vec{\ell} \cdot \vec{F}
$$

Momentum and energy are conserved if they don't enter or leave the system.

Maxwell's Equations

In differential form:

$$
\begin{aligned}
\vec{\nabla} \cdot \vec{E} & =\frac{\rho}{\epsilon_{0}} \\
\vec{\nabla} \times \vec{E} & =-\frac{\partial \vec{B}}{\partial t} \\
\vec{\nabla} \cdot \vec{B} & =0 \\
\vec{\nabla} \times \vec{B} & =\mu_{0} \vec{J}+\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

In integral form:

$$
\begin{aligned}
\int_{A} d \vec{A} \cdot \vec{E} & =\int_{V} \frac{\rho}{\epsilon_{0}} d V \\
\oint_{\ell} d \vec{\ell} \cdot \vec{E} & =-\frac{\partial}{\partial t} \int_{A} d \vec{A} \cdot \vec{B}=-\frac{\partial \Phi_{B}}{\partial t} \\
\int_{A} d \vec{A} \cdot \vec{B} & =0 \\
\oint_{\ell} d \vec{\ell} \cdot \vec{B} & =\int_{A} d \vec{A} \cdot\left(\mu_{0} \vec{J}+\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}\right) \\
& =\mu_{0} I_{\mathrm{encl}}+\frac{1}{c^{2}} \frac{\partial \Phi_{E}}{\partial t}
\end{aligned}
$$

Vector Algebra

The dot product, or overlap, is defined:

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z} \\
& =\|\vec{u}\|\|\vec{v}\| \cos (\theta)
\end{aligned}
$$

where θ is the angle between \vec{u} and \vec{v}. The cross product, or normal volume:

$$
\vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right|
$$

where $|:::|$ indicates the determinant.

Vector Calculus

The gradient of a scalar function f :

$$
\vec{\nabla} f(x, y, z)=\frac{\partial f}{\partial x} \hat{x}+\frac{\partial f}{\partial y} \hat{y}+\frac{\partial f}{\partial z} \hat{z}
$$

The divergence of a vector function \vec{f} : $\vec{\nabla} \cdot \vec{f}(x, y, z)=\frac{\partial \vec{f} \cdot \hat{x}}{\partial x}+\frac{\partial \vec{f} \cdot \hat{y}}{\partial y}+\frac{\partial \vec{f} \cdot \hat{z}}{\partial z}$
The curl of a vector function \vec{f} :

$$
\vec{\nabla} \times \vec{f}(x, y, z)=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\vec{f} \cdot \hat{x} & \vec{f} \cdot \hat{y} & \vec{f} \cdot \hat{z}
\end{array}\right|
$$

Lorentz Force Law

For a point charge:

$$
\vec{F}=q \vec{E}+q(\vec{v} \times \vec{B})
$$

For part of a neutrally charged wire:

$$
d \vec{F}=I d \vec{\ell} \times \vec{B}
$$

Note that magnetic fields do no work!

Cyclotron Motion

If $\vec{B} \perp \vec{v}$ then a point charge will gyrate with period $T=2 \pi R /\|\vec{v}\|$ and radius:

$$
R=\frac{m\|\vec{v}\|}{|q|\|\vec{B}\|}
$$

If $\vec{B} \cdot \vec{v}=\|\vec{B}\|\|\vec{v}\| \cos \theta$, then the radius is $R \mapsto R / \sin (\theta)$ and motion is helical.

Electromagnetic Flux

The electric flux through an area A :

$$
\Phi_{E}=\int_{A} d \vec{A} \cdot \vec{E}
$$

The magnetic flux through an area A :

$$
\Phi_{B}=\int_{A} d \vec{A} \cdot \vec{B}
$$

Biot-Savart Law

The \vec{B}-field of a moving charge is:

$$
\vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} \frac{q \vec{v} \times \vec{r}}{\|\vec{r}\|^{3}}
$$

Or for a differential current element:

$$
d \vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{\ell} \times \vec{r}}{\|\vec{r}\|^{3}}
$$

Ampere's Loop Law

Ampere's Law is useful for constant currents with circular symmetry:

$$
\oint_{\ell} d \vec{\ell} \cdot \vec{B}=\mu_{0} I_{\mathrm{encl}}
$$

Some results found via Ampere's Law:

Current Geometry	Magnetic Field
Long straight wire	$\vec{B}=\frac{\mu_{0} I}{2 \pi r} \hat{\theta}$
Above circular loop	$\vec{B}=\frac{\mu_{0} I a^{2} \hat{z}}{2\left(z^{2}+a^{2}\right)^{3 / 2}}$
Inside conductor	$\vec{B}=\frac{\mu_{0} I}{2 \pi} \frac{r}{R^{2}} \hat{\theta}$
Center of solenoid	$\vec{B}=\mu_{0} N I \hat{z}$

FARADAY LAW \& Inductance

There is a voltage (emf) associated with changing magnetic fluxes:

$$
\mathcal{E}=-\frac{d \Phi_{B}}{d t}
$$

Let the self-inductance of a current be:

$$
L=\Phi_{B} / I
$$

Energy can be stored in magnetic fields:

$$
U_{L}=\frac{1}{2} L I^{2}
$$

Circuit Elements

The voltages of circuit components are:

$$
\begin{aligned}
\mathcal{E}_{\text {battery }} & =\mathcal{E}_{0} \\
\mathcal{E}_{\text {resistor }} & =I R \\
\mathcal{E}_{\text {capacitor }} & =Q / C \\
\mathcal{E}_{\text {inductor }} & =-L d I / d t
\end{aligned}
$$

if a capacitor is in a wire, $I=d Q / d t$.

Kirchhoff's Laws

Voltage is single-valued, so the sum of voltages around any loop is zero:

$$
\sum_{\circlearrowleft} \mathcal{E}=0
$$

Charge is conserved (no accumulation), so at any junction currents sum to zero:

$$
\sum_{\perp} I=0
$$

Kirchoff's Laws form a system of linear ODEs/equations which can be solved.

Characteristic Equations

A powerful method to solve linear homogeneous differential equations is the method of characteristic equations. Consider the ODE:

$$
a \frac{d^{2} q(t)}{d t^{2}}+b \frac{d q(t)}{d t}+c q(t)=0
$$

The general solution to this is:

$$
q(t)=q_{+} e^{\omega_{+} t}+q_{-} e^{\omega_{-} t}
$$

where:

$$
\omega_{ \pm}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

and $q_{ \pm}$are fixed by boundary values.

Alternating Current

AC circuits are periodically driven:

$$
\begin{aligned}
\mathcal{E}_{\text {source }} & =\mathcal{E}_{0} \cos (\omega t) \\
I_{\text {source }} & =I_{0} \cos (\omega t)
\end{aligned}
$$

Ohm's Law with complex impedances:

$$
\mathcal{E}=I Z
$$

Where the impedances are given by:

$$
\begin{aligned}
Z_{\text {resistor }} & =R \\
Z_{\text {capacitor }} & =1 / i \omega C \\
Z_{\text {inductor }} & =i \omega L
\end{aligned}
$$

Series and parallel impedances add as:

$$
\begin{aligned}
Z_{\text {series }} & =Z_{1}+Z_{2}+\cdots+Z_{n} \\
Z_{\text {parallel }} & =\frac{1}{\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\cdots+\frac{1}{Z_{n}}}
\end{aligned}
$$

If we only care about the amplitudes then we can consider the magnitude:

$$
|Z|=\sqrt{\operatorname{Re}(Z)^{2}+\operatorname{Im}(Z)^{2}}
$$

Physics 1C at UCLA \diamond Formula Sheet (2 of 2)

Complex Numbers

Let $i=\sqrt{-1}$, and $z=x+i y$ for real numbers x and y, then z is referred to as a complex number. Pictorially, z makes an angle $\arg (z)=\tan ^{-1}(y / x)$ with the x axis and is a radius $|z|=$ $\sqrt{x^{2}+y^{2}}$ from the origin. We write that $x=\operatorname{Re}(z)$ and $y=\operatorname{Im}(z)$.
The exponential of a complex number:

$$
e^{z}=e^{x} e^{i y}=e^{x}(\cos (y)+i \sin (y))
$$

so if $x=-\lambda t$ and $y=\omega t$, then the real part x corresponds to amplitude while the imaginary part y corresponds to oscillatory behavior.
To make a denominator real, multiply by 1 in terms of the complex conjugate: $\frac{a+b i}{c+d i}=\frac{a+b i}{c+d i} \frac{c-d i}{c-d i}=\frac{(a+b i)(c-d i)}{c^{2}+d^{2}}$ The phase angle of a complex function:

$$
\theta(f(t))=\tan ^{-1}\left(\frac{\operatorname{Im}(f(t))}{\operatorname{Re}(f(t))}\right)
$$

Electromagnetic Waves

From Maxwell's equations, one can derive that in free space for $1 / c^{2}=\epsilon_{0} \mu_{0}$:

$$
\nabla^{2} \vec{E}=\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}
$$

which corresponds to the propagation of electromagnetic waves at velocity c. A similar relation holds for the magnetic field when scaled as $|\vec{B}|=|\vec{E}| / c$. For electromagnetic waves we have $\hat{E} \perp \hat{B}$, and $\hat{S}=\hat{E} \times \hat{B}$ is the direction of propagation.

The Poynting Vector

Light has momentum and so there is a radiation pressure and force:

$$
\vec{F}=\vec{S} A / c
$$

where \vec{S} is the Poynting vector:

$$
\begin{gathered}
\vec{S}=\vec{E} \times \vec{B} / \mu_{0} \\
\text { CLASSIC OPTICS }
\end{gathered}
$$

Reflection direction is symmetric with respect to the surface normal.
Snell's law relates the incident light's angle with respect to the surface normal to the refracted light's angle:

$$
n_{1} \sin \left(\theta_{1}\right)=n_{2} \sin \left(\theta_{2}\right)
$$

Total internal reflection occurs when $\theta>\theta_{\text {crit }}$ where:

$$
\begin{aligned}
& \text { where: } \\
& \theta_{\text {crit }}=\sin ^{-1}\left(\frac{n_{\text {exterior }}}{n_{\text {interior }}}\right)
\end{aligned}
$$

Wave Interference

Waves of the same wavelength can interfere constructively if $\phi=2 m \pi$ or destructively if $\phi=(2 m+1) \pi$ for phase shifts ϕ and integers m. The phase shift accumulated over a length ℓ in a material with index of refraction n is:

$$
\phi=2 \pi \ell / \lambda_{n}
$$

where $\lambda_{n}=\lambda / n$ is the material-specific wavelength and $n=c / v$.

Geometric Optics

Focal lengths are positive or negative:

Optical Element	Focal Length
Convex lens	$f>0$
Concave lens	$f<0$
Convex mirror	$f>0$
Concave mirror	$f<0$

although no light goes through a mirror. For multiple thin lenses close together:

$$
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}+\cdots+\frac{1}{f_{n}}
$$

The image distance is given by:

$$
\frac{1}{d}+\frac{1}{d^{\prime}}=\frac{1}{f} \Longleftrightarrow d^{\prime}=\left(\frac{1}{f}-\frac{1}{d}\right)^{-1}
$$

The image size is given by:
INTENTIONALLY LEFT BLANK

Special Relativity

Let there be two frames f and f^{\prime} oriented in the same direction with origins given by $\vec{o}=\vec{o}^{\prime}+u t \hat{x}$ for some speed u. An action occurs in the f frame and is observed in the f^{\prime} frame. If the action in the f frame is described by the 4 -vector $\vec{x}=(c t, x, y, z)^{\top}$, then the observed action in the f^{\prime} frame is:

$$
\left(\begin{array}{c}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & \beta \gamma & 0 & 0 \\
\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right)
$$

where $\beta=u / c$ and $\gamma=1 / \sqrt{1-\beta^{2}}$.
Different behaviors in different frames:

- Time dilation is $t \mapsto t^{\prime}$
- Length contraction is $x \mapsto x^{\prime}$
- Velocity distortion is $x / t \mapsto x^{\prime} / t^{\prime}$ Relativistic energy is:

$$
E=\sqrt{m^{2} c^{4}+p^{2} c^{2}}
$$

which is $E=m c^{2}$ if $|p| \ll|m c|$, or $E=$ $p c$ if $|m c| \ll|p|$, where momentum is: $\vec{p}=\gamma m \vec{v}$

