Physics 1C • Worksheet 9 Answers

- 1. If the origin is on the wall at the midpoint between the slits, the condition is that $\sqrt{(z+d/2)^2 + \ell^2} \sqrt{(z-d/2)^2 + \ell^2} = (2m+1)\lambda/2$ for integers m
- 2. If the origin is on the wall at the midpoint between the slits, the condition is that $\sqrt{(z+d\cos(\theta)/2)^2+(\ell-d/2\sin(\theta)/2)^2}-\sqrt{(z-d\cos(\theta)/2)^2+(\ell+d/2\sin(\theta)/2)^2}=(2m+1)\lambda/2$ for integers m
- 3. If the origin is on the wall at the midpoint between the slits, the condition is that $\sqrt{(z+d/2)^2 + \ell^2} \sqrt{(z-d/2)^2 + \ell^2} = (2m+1/2)\lambda/2$ for integers m
- 4. $\lambda = \lambda_0/n$, so there will be constructive interference when $\phi = 2\pi (2d/\lambda) = 2m\pi$, or when $\lambda_0 = 2nd/m$ for integers m
- 5. Here $\phi = 2\pi (2d/\lambda) + \pi = 2m\pi$ is the condition for constructive interference, or $\lambda_0 = 2nd/(m-1/2)$
- 6. 1.2554×10^{-10} [m]
- 7. $a\sin(\theta) = m\lambda$, so $a = 3 \cdot 6 \times 10^{-7} / \sin(30^{\circ}) = 3.6 \times 10^{-6}$ [m]
- 8. No. We still have $d\sin(\theta) = m\lambda$.
- 9. We have $\theta_i = \sin^{-1}(z_i\lambda/d) = \sin^{-1}(z_i/5)$ which is $\theta_1 = 14.1^\circ$, $\theta_2 = 26.5^\circ$, $\theta_3 = 40.4^\circ$, $\theta_4 = 58.0^\circ$, and there is no θ_5 , since $z_5\lambda/d > 1$.
- 10. (c)