- £₂ = -√L₁L₂İ₁, yes it is constant.
 L = 4π²
 a, e
 RQ̇ + Q/C = 0, Q(t) = Q₀e^{-t/RC}
 a, d
 LQ̈ + Q/C = 0, Q(t) = Q₊e^{i√1/LCt} + Q₋e^{-i√1/LCt} where Q_± = ±I₀√LC/2i
 a, e
 LQ̈ + RQ̇ = 0, this is a second order ODE so we need two boundary values to specify Q(t), a possibility would be to specify Q̈(0). If we don't care about Q(t), we can solve this as a first order ODE for Q̇(t)
- 9. a, c, d, e
- 10. $L\ddot{Q} + R\dot{Q} + Q/C = 0$, $Q(t) = Q_+e^{\omega_+t} + Q_-e^{\omega_-t}$ where $\omega_{\pm} = (-R \pm \sqrt{R^2 4L/C})/2L$ and $Q_+ + Q_- = Q_0$ and $\omega_+Q_+ + \omega_-Q_- = I_0$
- 11. $U_L(t) = \frac{1}{2}L(\omega_+Q_+e^{\omega_+t} + \omega_-Q_-e^{\omega_-t})^2$, $U_C(t) = \frac{1}{2}(Q_+e^{\omega_+t} + Q_-e^{\omega_-t})^2/C$. The sum is only constant-indicating energy conservation-when R = 0
- 12. Let us consider initial conditions so that $Q(t) = Q_0 e^{\omega_+ t}$. Now, since there is both oscillatory and decay behavior $4L/C > R^2$, so $\omega_+ = \operatorname{Re}(\omega_+) + i\operatorname{Im}(\omega_+) = (-R/2L) + i(\sqrt{R^2 4L/C}/2L)$. Now, we want $0.001 = 2\pi/\operatorname{Im}(\omega_+) = 2\pi/(\sqrt{R^2 4L/C}/2L)$ and $\frac{1}{2} = e^{\operatorname{Re}(\omega_+)1} = e^{(-R/2L)1}$. So we have two equations with three free variables. One solution is to fix L = 1 [H], and find $R = 2\ln(2) \approx 1.386$ [Ω] and $C \approx 0$ [F].