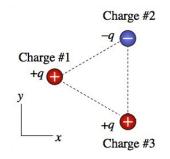
## Problem 1. (15 Points)

## I. (5 points)

Suppose that four stationary point charges +Q are placed at the corners of a square of side length a as shown below. If a free point charge +q is placed at rest somewhere in the square, at how many distinct points can it stay at rest?

| (a) 0 | (d) 3                                                                                                                                                                                                                                         |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) 1 | (e) 4                                                                                                                                                                                                                                         |
| (c) 2 | (f) 5                                                                                                                                                                                                                                         |
|       | X X X Y Y Y X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X |
|       | T Y & T Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y                                                                                                                                                                                                       |
|       |                                                                                                                                                                                                                                               |


### II. (5 points)

Three point charges lie at the vertices of an equilateral triangle as shown below. Charges 2 and 3 make up an electric dipole. The net electric force that charge 1 exerts on the dipole is in the:

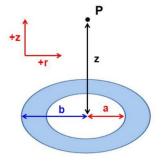
(d)  $-\hat{x}$  direction

(e)  $-\hat{y}$  direction

- (a)  $+\hat{x}$  direction
- (b)  $+\hat{y}$  direction
- (c) none of the above



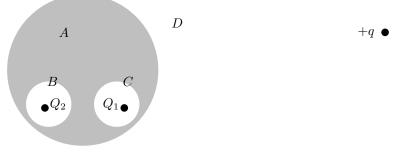
#### III. (5 points)


True/False questions.

- (a) Only charge enclosed within a Gaussian surface can produce an electric field at points on the Gaussian surface. (3 points)
- (b) If there is no net charge inside of a Gaussian surface, the electric field must be zero at all points on the Gaussian surface. (2 points)

# Problem 2. (30 Points)

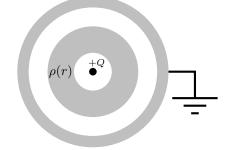
An annulus has inner radius a and outer radius b and carries a uniform charge density of  $\sigma$ .


- (a) Calculate the electric potential V at point P, a distance z above the origin on the positive z-axis. (15 points)
- (b) Using  $E = -\nabla V$ , calculate the electric field at point P from the electric potential V. (10 points)
- (c) What is the electric field at P for a uniformly charged disk of radius R? (5 points)



### Problem 3. (20 Points)

Two off-centered cavities are located inside a spherical conductor. Two off-centered point charges  $+Q_1$  and  $+Q_2$  are located inside these cavities as shown.


- (a) Qualitatively, draw the surface charge distributions and electric field lines at A, B, C and D. (10 points)
- (b) A point charge +q is placed outside the conductor a distance r from the center of the conductor, a distance  $r_1$  from charge  $Q_1$  and a distance  $r_2$  from charge  $Q_2$  ( $r \gg$  the radius of the spherical conductor). What is the total force acting on the point charge +q? (10 points)



# Problem 4. (35 Points)

A hollow insulating spherical shell of inner radius  $R_0$  and outer radius  $R_1$  carries a charge density of  $\rho(r) = \rho_0 (r/R_1)^3$ . A positive charge +Q is placed in the center of the hollow spherical shell and a grounded conducting shell with inner radius  $R_2$  and outer radius  $R_3$  surrounds the hollow sphere.

- (a) What is the total charge on the insulating spherical shell? (5 points)
- (b) What charges are on the inner and outer surfaces of the conducting shell? (5 points)
- (c) Find the electric field at all points in space. (15 points)
- (d) Plot the electric field as a function of r. (5 points)
- (e) How would change if the conducting shell was not grounded (and was not given any charge)? (5 points)

