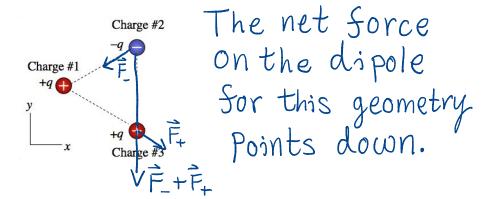
Problem 1. (15 Points)

I. (5 points)

Suppose that four stationary point charges +Q are placed at the corners of a square of side length a as shown below. If a free point charge +q is placed at rest somewhere in the square, at how many distinct points can it stay at rest?

- (a) 0
- (b) 1
- (c) 2


- (d) 3
- (e) 4
- Observe that there are five points
 - Where $\sum_{i=1}^{4} \hat{E}_{i} = 0$.
 One is a stable equilibrium,
 - the rest are unstable.

II. (5 points)

Three point charges lie at the vertices of an equilateral triangle as shown below. Charges 2 and 3 make up an electric dipole. The net electric force that charge 1 exerts on the dipole is in the:

- (a) $+\hat{x}$ direction
- (b) $+\hat{y}$ direction
- (c) none of the above

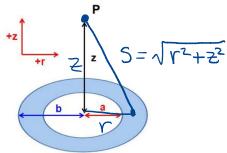
- (\mathbf{d}) $-\hat{\boldsymbol{x}}$ direction
- $\hat{\boldsymbol{y}}$ direction

III. (5 points)

True/False questions.

- (a) Only charge enclosed within a Gaussian surface can produce an electric field at points on the Gaussian surface. (3 points)
- (b) If there is no net charge inside of a Gaussian surface, the electric field must be zero at all points on the Gaussian surface. (2 points)

False



Problem 2. (30 Points)

An annulus has inner radius a and outer radius b and carries a uniform charge density of σ .

- (a) Calculate the electric potential V at point P, a distance z above the origin on the positive z-axis. (15 points)
- (b) Using $E = -\nabla V$, calculate the electric field at point P from the electric potential V. (10 points)
- (c) What is the electric field at P for a uniformly charged disk of radius R? (5 points)

(a) Use the relation:

$$V = \frac{1}{4\pi\epsilon_0} \int_{\text{charge}} \frac{dq}{S} = \frac{1}{4\pi\epsilon_0} \int_{a}^{b} \frac{\sigma z\pi r dr}{\sqrt{r^2 + z^2}}$$

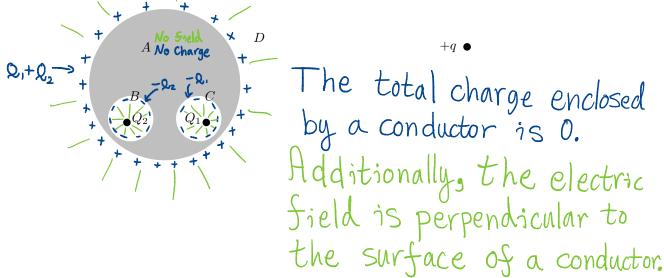
$$V = \frac{\sigma}{4\xi_0} \int_{a^2 + z^2}^{b^2 + z^2} \frac{du}{\sqrt{u}} = \frac{\sigma}{2\xi_0} \left(\sqrt{b^2 + z^2} - \sqrt{a^2 + z^2} \right)$$

(b) Use the relation:

$$\vec{E} = -\vec{\nabla}V$$
, where here $\vec{\nabla}f = \frac{\partial f}{\partial z}\hat{z}$, so

$$\vec{E} = \frac{3}{32} \left[\frac{\sigma}{2\xi_0} \left(\sqrt{b^2 + \xi^2} - \sqrt{a^2 + \xi^2} \right) \right] \hat{\xi}$$

$$= \frac{0}{2\varepsilon_0} \left[\frac{2}{\sqrt{z^2 + a^2}} - \frac{2}{\sqrt{z^2 + b^2}} \right] \stackrel{\wedge}{2}$$

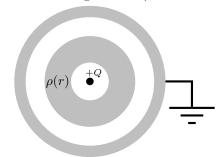

(c) This is the case of a=0, b=R, which is:

$$\vec{E} = \frac{\sigma}{2\varepsilon_0} \left[1 - \frac{Z}{\sqrt{z^2 + R^2}} \right] \hat{Z}$$

Problem 3. (20 Points)

Two off-centered cavities are located inside a spherical conductor. Two off-centered point charges $+Q_1$ and $+Q_2$ are located inside these cavities as shown.

- (a) Qualitatively, draw the surface charge distributions and electric field lines at A, B, C and D. (10 points)
- (b) A point charge +q is placed outside the conductor a distance r from the center of the conductor, a distance r_1 from charge Q_1 and a distance r_2 from charge Q_2 ($r \gg$ the radius of the spherical conductor). What is the total force acting on the point charge +q? (10 points)



(b) Since r is large, the whole charge distribution looks like a monopole of magnitude Q_1+Q_2 a distance r away: $\hat{F} = q\hat{E} = q \cdot \frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1+Q_2}{r^2} \hat{r}$

Problem 4. (35 Points)

A hollow insulating spherical shell of inner radius R_0 and outer radius R_1 carries a charge density of $\rho(r) = \rho_0 (r/R_1)^3$. A positive charge +Q is placed in the center of the hollow spherical shell and a grounded conducting shell with inner radius R_2 and outer radius R_3 surrounds the hollow sphere.

- (a) What is the total charge on the insulating spherical shell? (5 points)
- (b) What charges are on the inner and outer surfaces of the conducting shell? (5 points)
- (c) Find the electric field at all points in space. (15 points)
- (d) Plot the electric field as a function of r. (5 points)
- (e) How would change if the conducting shell was not grounded (and was not given any charge)? (5 points)

- (a) We find the charge enclosed as dependent on Γ : $q_{\text{shell}}(r) = \int_{\text{charges}} dq = \int_{R_0}^{r} \frac{\bar{r}^3}{R_i^3} 4\pi \bar{r}^2 d\bar{r} = \frac{2\pi p_0}{3} \frac{r^6 R_0^6}{R_i^3} \frac{r^6 R_0^6}{R_i^3} \frac{r^6 R_0^6}{R_i^3}$
- (b) There is no total charge enclosed in a conductor, and a ground has V=0, hence: $q_{in}=-\left(\varrho+q_{shell}(R_i)\right) \quad \text{and} \quad q_{out}=0$
- (c) We note $E \cdot dA = EdA$, so $E = qenc/E_0A = qenc/4\pi E_0 r^2$, and $E = \frac{1}{4\pi E_0} \frac{1}{r^2} \begin{cases} Q + \frac{2\pi p_0}{3} \frac{r^6 R_0^6}{R_1^3} & R_0 < r < R_1 \\ Q + \frac{2\pi p_0}{3} \frac{R_1^6 R_0^6}{R_1^3} & R_1 < r < R_2 \end{cases}$ $R_2 < r < \infty$
- (e) If the conductor was neutral, then $q_{out} = -q_{in}$, and So for $R_3 \angle Y \angle \infty$, $q_{enc} = Q + \frac{2\pi \beta_0}{3} \frac{R_1^6 R_0^6}{R_1^3}$