Perfect Fluid

A perfect fluid is in-compressible and has no viscosity. Their density is

$$
\rho=\frac{m}{V}
$$

The pressure is then $P=|\boldsymbol{F}| / A$.
In a fluid subject to a gravitational field

$$
P(y)=P(0)+\rho \boldsymbol{g} \cdot \boldsymbol{y}
$$

Archimedes principle: bodies in a fluid feel an upward buoyant force equal to the weight of fluid displaced. For flowing fluids the volumetric flow rate is

$$
\frac{d V}{d t}=\boldsymbol{A} \cdot \boldsymbol{v}
$$

and the continuity equation

$$
\boldsymbol{A}_{1} \cdot \boldsymbol{v}_{1}=\boldsymbol{A}_{2} \cdot \boldsymbol{v}_{2}
$$

As a result of energy-conservation we have Bernoulli's equation $P_{1}+\rho \boldsymbol{g} \cdot \boldsymbol{y}_{1}+\frac{1}{2} \rho\left|\boldsymbol{v}_{1}\right|^{2}=P_{2}+\rho \boldsymbol{g} \cdot \boldsymbol{y}_{2}+\frac{1}{2} \rho\left|\boldsymbol{v}_{2}\right|^{2}$

Periodic Motion

Periodic motion repeats in time with a period T. Reexpressing in frequency f, angular frequency ω, velocity c, wavelength λ and wavenumber k, we have

$$
\begin{gathered}
T=\frac{1}{f}=\frac{2 \pi}{\omega}=\frac{\lambda}{c}=\frac{2 \pi}{c k} \\
f=\frac{1}{T}=\frac{\omega}{2 \pi}=\frac{c}{\lambda}=\frac{c k}{2 \pi} \\
\omega=2 \pi f=\frac{2 \pi}{T}=\frac{2 \pi c}{\lambda}=c k \\
c=\frac{\lambda}{T}=f \lambda=\frac{2 \pi f}{k}=\frac{\omega}{k}=\frac{2 \pi}{k T}=\frac{\omega \lambda}{2 \pi} \\
\lambda=c T=\frac{c}{f}=\frac{2 \pi}{k}=\frac{2 \pi c}{\omega} \\
k=\frac{2 \pi}{\lambda}=\frac{2 \pi f}{c}=\frac{2 \pi}{c T}=\frac{\omega}{c} \\
\text { PENDULUMS }
\end{gathered}
$$

Pendula oscillate with

$$
\omega=\sqrt{m g d / I}
$$

where d is the distance from the center of rotation to the center of mass. The moment of inertia is

$$
I=\sum_{i} m_{i} d_{i}^{2}
$$

For a simple pendulum (a small mass at the end of a string), $I=m d^{2}$ so

$$
\omega=\sqrt{g / d}
$$

Simple Harmonic Motion

The simple harmonic motion ODE is

$$
\frac{d^{2} x}{d t^{2}}=-\omega^{2} x
$$

whose solution is

$$
x(t)=A \cos (\omega t-\phi)
$$

In spring-block motion this arises as

$$
\boldsymbol{F}=m \boldsymbol{a}=-k_{s} \boldsymbol{x}
$$

so that

$$
\frac{d^{2} \boldsymbol{x}}{d t^{2}}=-\left(\sqrt{\frac{k_{s}}{m}}\right)^{2} \boldsymbol{x}
$$

Driven-Damped Oscillation

We may consider a more nuanced ODE

$$
\frac{d^{2} x}{d t^{2}}-b \frac{d x}{d t}+\omega_{0}^{2} x=F_{0} \cos (\Omega t)
$$

Whose solution is

$$
x=A e^{-b t / 2} \cos (\omega t-\phi)
$$

with

$$
\omega=\sqrt{\omega_{0}^{2}-b^{2} / 4 t}
$$

and

$$
A=\frac{F_{0}}{\sqrt{\left(\omega^{2}-\Omega^{2}\right)^{2}+b^{2} \Omega^{2}}}
$$

So we see that in the absence of driving, the amplitude goes to zero (at long times), although there may be some transient motion. This is classified as

- $b<2 \omega$: underdamped
- $b=2 \omega$: critically damped
- $b>2 \omega$: overdamped

Traveling Waves

Waves can travel (- right, or + left)

$$
y(x, t)=A \cos (k x \mp \omega t)
$$

which solve the wave equation

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

Waves can be superimposed so that

$$
y_{\text {tot }}(x, t)=\sum_{i} y_{i}(x, t)
$$

Mechanical Waves

The wave velocity on a string with mass density μ and tension F is

$$
c=\sqrt{F / \mu}
$$

The average power transmitted is

$$
\langle P\rangle=\frac{1}{2} \frac{F}{c} \omega^{2} A^{2}=\frac{1}{2} \omega k A^{2}
$$

Sound Waves

Sound is longitudinal waves with

$$
c=\sqrt{B / \rho}
$$

where B is the bulk modulus which have maximum power (displacement d)

$$
P_{0}=B k d
$$

The intensity is then

$$
I=\frac{1}{2} \frac{P_{0}^{2}}{\rho c}
$$

Which is often quoted in decibels

$$
\beta=10 \log _{10}\left(\frac{I}{10^{-12} \mathrm{~W} / \mathrm{m}^{2}}\right)
$$

Beats form from two different tones

$$
f_{\text {beats }}=\left|f_{1}-f_{2}\right|
$$

The Doppler effect is

$$
f_{\text {listen }}=\frac{c+v_{\text {listen }}}{c+v_{\text {source }}} f_{\text {source }}
$$

Standing Waves

Standing waves are when nodes ($y=$ 0 positions) are t-independent. For a string of length L with fixed ends the standing-wave frequency is

$$
f_{n}=n \frac{c}{2 L}
$$

In an open pipe standing waves form with frequencies (where $n=1,2,3, \ldots$)

$$
f_{n}=n \frac{c}{2 L}
$$

and in a stopped pipe the frequencies

$$
f_{n}=\frac{2 n-1}{2} \frac{c}{2 L}
$$

Charge Elements

Differential charge elements are

$$
\begin{aligned}
\text { line } & \lambda(x) d x \\
\text { strip } & \sigma(x) w d x \\
\text { disc } & \sigma(r) 2 \pi r d r \\
\text { cylinder } & \rho(r) 2 \pi r h d r \\
\text { sphere } & \rho(r) 4 \pi r^{2} d r
\end{aligned}
$$

where $d q \sim \lambda d x \sim \sigma d A \sim \rho d V$.

Helpful Integrals

The following may come in useful

$$
\begin{gathered}
\int \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{x}{a^{2}\left(x^{2}+a^{2}\right)^{1 / 2}} \\
\int \frac{x d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=-\frac{1}{\left(x^{2}+a^{2}\right)^{1 / 2}} \\
\int \frac{d x}{\left(x^{2}+a^{2}\right)^{1 / 2}}=\ln \left|x+\left(x^{2}+a^{2}\right)^{1 / 2}\right| \\
\int \frac{x d x}{\left(x^{2}+a^{2}\right)^{1 / 2}}=\left(x^{2}+a^{2}\right)^{1 / 2}
\end{gathered}
$$

Physics 1B at UCLA \diamond Formula Sheet (1 of 2)

Electric Fields

Electric fields induce a force on charges

$$
\boldsymbol{F}=q \boldsymbol{E}
$$

Charges create electric fields

$$
\boldsymbol{E}_{\text {point charge }}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\boldsymbol{r}}
$$

For a more general charge distribution

$$
\boldsymbol{E}=\frac{1}{4 \pi \epsilon_{0}} \int_{q} \frac{d q}{r^{2}} \hat{\boldsymbol{r}}
$$

Electric fields add as vectors

$$
\boldsymbol{E}_{\mathrm{tot}}=\sum_{i} \boldsymbol{E}_{i}
$$

Electric Potentials

The potential energy is $U=q V$ where $\boldsymbol{F}=-\boldsymbol{\nabla} U$ so from $\boldsymbol{F}=q \boldsymbol{E}$ we have

$$
\boldsymbol{E}=-\nabla V
$$

and the electric field is conservative so

$$
V=\int_{r}^{\infty} \boldsymbol{E} \cdot d \boldsymbol{r}
$$

The potential of a point-charge is

$$
V_{\text {point charge }}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r}
$$

For a more general charge distribution

$$
V=\frac{1}{4 \pi \epsilon_{0}} \int_{q} \frac{d q}{r}
$$

Electric potentials add as scalars

$$
V_{\mathrm{tot}}=\sum_{i} V_{i}
$$

GAUSS'S LAW

Gauss's law is

$$
\Phi=\frac{q_{\mathrm{enc}}}{\epsilon_{0}}
$$

Where the electric flux is

$$
\Phi=\int_{A} d \boldsymbol{A} \cdot \boldsymbol{E}
$$

and the enclosed charge is

$$
q_{\mathrm{enc}}=\int_{V} d q=\int_{V} \rho d V
$$

If \boldsymbol{E} is parallel to \boldsymbol{A} everywhere and the charge is symmetric then $d \boldsymbol{A} \cdot \boldsymbol{E}=1$, so

$$
|\boldsymbol{E}|=\frac{q_{\mathrm{enc}}}{\epsilon_{0} A}
$$

Conductors \& Insulators

There is no net charge inside a conductor: all charges are on the surface or in cavities, hence \boldsymbol{E} is zero inside a conductor (if there is a charge in a cavity, the opposite charge is on the bounding surface); the potential on any one surface of a conductor is the same (so field lines are perpendicular to the surface). Insulators have fixed charges.

CAPACITORS

The capacitance is

$$
C=q / \mathcal{E} \quad \Longleftrightarrow \quad \mathcal{E}=q / C
$$

in a parallel-plate configuration this is

$$
C=\epsilon A / d
$$

The energy stored is then

$$
U=\frac{q^{2}}{2 C}=\frac{1}{2} C \mathcal{E}^{2}=\frac{1}{2} Q \mathcal{E}
$$

For capacitors in series

$$
C_{\mathrm{tot}}=\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\ldots\right)^{-1}
$$

For capacitors in parallel

$$
C_{\mathrm{tot}}=C_{1}+C_{2}+C_{3}+\ldots
$$

Resistors

Resistance in terms of the resistivity

$$
R=\rho L / A
$$

For resistors in series

$$
R_{\mathrm{tot}}=R_{1}+R_{2}+R_{3}+\ldots
$$

For resistors in parallel

$$
R_{\mathrm{tot}}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots\right)^{-1}
$$

The voltage across a resistor is

$$
\mathcal{E}=j R
$$

INTENTIONALLY LEFT BLANK
Where the current is defined as

$$
j=\frac{d q}{d t}
$$

The power dissipated in a resistor is

$$
P=j \mathcal{E}=j^{2} \mathcal{E}=\mathcal{E}^{2} / R
$$

Kirchioff's Rules

Voltage is single-valued, so the sum of voltages around any loop is zero:

$$
\sum_{\circlearrowleft} \mathcal{E}=0
$$

Charge is conserved (no accumulation), so at any junction currents sum to zero:

$$
\sum_{\perp} j=0
$$

RC Circuits

The RC circuit is

which can charge as

$$
q(t)=C \mathcal{E}\left(1-e^{-t / R C}\right)
$$

or discharge as

$$
q(t)=q(0) e^{-t / R C}
$$

where the current is $j=d q / d t$.

