Exercise 1. Units

What is the unit of power? Show that IV, I^2R , and V^2/R all have units of power.

Exercise 2. Lightbulb

Suppose you are told that a dc lightbulb uses 60 [W], and has a potential difference of 120 [V]. What is the current?

(a) 0.5 [A] ***

(c) 2 [A]

(b) 1 [A]

(d) 4 [A]

Exercise 3. Resistivity I

Find the resistivity of a square bar of cross sectional area 2 [cm²], length 15 [cm], and resistivity 30 [Ω m].

(a) $30.0 [\Omega]$

(c) $113 [\Omega]$

(b) $35.8 [\Omega]$

(d) 225 $[\Omega]$ ***

Exercise 4. Resistivity II

Find the resistivity of a square bar of cross sectional area 2 [cm²], length 15 [cm], and resistivity 30x [Ω m], where x is the distance along the bar.

(a) $422 [\Omega]$

(c) $1688 [\Omega] ****$

(b) $844 [\Omega]$

(d) $3375 [\Omega]$

Exercise 5. Lightning I

Suppose we are told that a lightning bolt carries 15 [C] of charge at a current of 30000 [A]. How long does the bolt last?

(a) 0.0005 [s] ***

(c) 0.05 [s]

(b) 0.005 [s]

(d) 0.5 [s]

Exercise 6. Lightning II

Suppose that the lightning bolt goes through a potential difference of 10000000 [V]. What is the average power?

(a) 300 [W] ***

(c) 300000000 [W]

(b) 300000 [W]

(d) 300000000000 [W] ***

Exercise 7. Lightning III

What is the total power transferred?

(a) 1500000 [J]

(c) 150000000 [J] ***

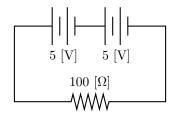
(b) 15000000 [J]

(d) 1500000000 [J]

Exercise 8. Lightning IV

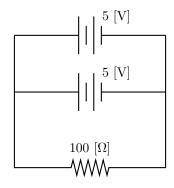
Why is the path of lighting jagged rather than straight?

Exercise 9. Lightning V


Electrons are always transferred from the sky to the ground during a lightning strike, but never the reverse.

(a) True

(b) False ***

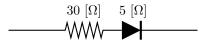

Exercise 10. Batteries in Series

Label the voltage and current on each wire.

Exercise 11. Batteries in Parallel

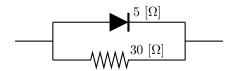
Label the voltage and current on each wire.

Exercise 12. Resistance I


Determine the equivalent resistance:

Exercise 13. Resistance II

Determine the equivalent resistance:


Exercise 14. Diode I

A diode behaves as a resistor in one direction, and an insulator in the other direction. Determine the equivalent resistance in both directions:

Exercise 15. Diode II

A diode behaves as a resistor in one direction, and an insulator in the other direction. Determine the equivalent resistance in both directions:

