AAP Peer Learning • Physics 1B • Worksheet 5

Exercise 1. Surface Area

What is the surface area of a sphere? A cylinder? A box?

- (a) sphere $2\pi rx + 2\pi r^2$, cylinder $4\pi r^2$, box 2(ab+bc+ac)
- (b) sphere $2\pi rx + 2\pi r^2$, cylinder 2(ab+bc+ac), box $4\pi r^2$
- (c) sphere $4\pi r^2$, cylinder $2\pi rx + 2\pi r^2$, box 2(ab+bc+ac)

Exercise 2. Cone I

Find the surface area of a cone with a circular base of radius r and a height of h.

Exercise 3. Cone II

Find the volume of a cone with a circular base of radius r and a height of h.

Exercise 4. Two Charges I

What is the electric field E(x, y) on the xy plane given by two charges q located at $(0, 0, 1)^T$ and $(0, 0, -1)^T$.

(a) 0 *** (c) -kq(b) *kq*

Exercise 5. Two Charges II

Is there any flux through the xy plane? Justify your answer.

Exercise 6. Gauss Law I

Suppose that we are given a distribution of charge, $\rho(z) = \rho_0 z$ in a cone with its base of radius r at the origin, and height h in the z direction. What is the total charge enclosed in the cone?

(a) 0 (c) $\pi r^2 h \rho_0 / 3$ (b) $\pi r^2 h^2 \rho_0 / 12 ***$ (d) $\pi r^2 h \rho_0$

Exercise 7. Gauss Law II

What is the net flux through a cylinder of radius r at the origin and with height in the z direction of h.

(c) $\pi r^2 h^2 \rho_0 / 12 \epsilon_0 ***$ (a) 0 (d) $\pi r^2 h \rho_0 / 3\epsilon_0$ (b) $\pi r^2 h^2 \rho_0 / 32 \epsilon_0$

Exercise 8. Gauss Law III

What is the net flux through a cylinder of radius r at the origin and with height in the z direction of 2h.

(c) $\pi r^2 h^2 \rho_0 / 12 \epsilon_0 ***$ (a) 0 (d) $\pi r^2 h \rho_0 / 3\epsilon_0$ (b) $\pi r^2 h^2 \rho_0 / 32 \epsilon_0$

Exercise 9. Gauss Law IV

What is the net flux through a cylinder of radius r at the origin and with height in the z direction of h/2.

(c) $\pi r^2 h^2 \rho_0 / 12 \epsilon_0$ (a) 0 (d) $\pi r^2 h \rho_0 / 3\epsilon_0$ (b) $\pi r^2 h^2 \rho_0 / 32 \epsilon_0 ***$

- (d) sphere $4\pi r^2$, cylinder 2(ab+bc+ac), box $2\pi rx+2\pi r^2$
- (e) sphere 2(ab+bc+ac), cylinder $4\pi r^2$, box $2\pi rx + 2\pi r^2$
- (f) sphere 2(ab+bc+ac), cylinder $2\pi rx + 2\pi r^2$, box $4\pi r^2$

- (d) $2kq/(1+x^2+y^2)$

Exercise 10. Flux I

Find the electric field at the point $P = (1,3,1)^T$ from a particle of charge +q at $(1,2,1)^T$.

(a) kq^{***} (c) kq^2 (b) kq/9 (d) $kq^2/9$

Exercise 11. Flux II

Find the electric field at the point $P = (1,3,1)^T$ from a particle of charge -q at $(1,1,1)^T$.

(a) -kq (c) kq^2 (b) -kq/4 *** (d) $kq^2/4$

Exercise 12. Flux III

Find the net field at $P = (1, 3, 1)^T$.

Exercise 13. Flux IV

What is the total flux given by the rectangular box that has corners at $(0,0,0)^T$ and $(2,3,2)^T$. Hint: don't do an integral.

- (a) 0^{***} (c) 4kq
- (b) 2kq (d) 8kq

Exercise 14. Disc I

By evaluating the following integral, show that the circumference of a circle is $2\pi r$:

$$C = \int r \ d\theta$$

Exercise 15. Disc II

From the result of the last problem and the following integral, show that the area of a disc is πr^2 :

$$A = \int r' C \ dr'$$