
Problem 1. Charged Cylinder

Consider a long insulating cylinder of radius R and charge density ρ(r) = ρ0r, surrounded by a neutrally
charged conducting shell of inner radius 2R and outer radius 3R.

• What is the enclosed charge as a function of radius?

• What is the electric field as a function of radius?

• What is the electric potential as a function of radius?

Let us calculate the charge enclosed for 0 ≤ r ≤ R:

q(r) =

∫ r

0

dq =

∫ r

0

ρdV =

∫ r

0

ρ0r̄ 2πr̄hdr̄ = 2πρ0h

∫ r

0

r̄2dr̄ =
2πρ0h

3
r3

For R < r < 2R:

q(r) =

∫ r

0

dq =

∫ R

0

dq +

∫ r

R

dq =
2πρ0h

3
R3 +

∫ r

R

dq =
2πρ0h

3
R3

For 2R < r < 3R:

q(r) =

∫ r

0

dq =

∫ R

0

dq +

∫ 2R

R

dq +

∫ r

2R

=
2πρ0h

3
R3 + 0 +

∫ r

2R

dq =
2πρ0h

3
R3 − 2πρ0h

3
R3 = 0

For 3R < r <∞:

q(r) =

∫ r

0

dq =

∫ R

0

dq +

∫ 2R

R

dq +

∫ 3R

2R

dq +

∫ r

3R

dq = (0) +

∫ r

3R

dq = (0) +
2πρ0h

3
R3 =

2πρ0h

3
R3

Electric fields then follow naturally by assuming the electric field is parallel to the surface normal vector
(E · dA = EdA), where we can insert q(r) from above:

E(r) =
q(r)

ε0A(r)
r̂ =

q(r)

ε02πrh
r̂

The potential is at r > 3R:

V (r) =

∫ ∞

r

E · dr̄ =

∫ ∞

r

Edr̄ =

∫ ∞

r

2πρ0h

3 ε02πr̄h
R3dr̄ =

ρ0

3ε0
R3

∫ ∞

r

dr̄

r̄
=

ρ0

3ε0
R3 ln(r̄)

∣∣∣∣r̄=∞

r̄=r

=∞

This broke down since we implicitly assumed that h =∞ when we assumed that E ·dA = EdA. This means
that we accidentally considered an infinite distribution of charge. Solving for finite h is rather harder.



Problem 2. Half of a Ring

Consider a half ring of radius a centered on the origin with charge −q from polar angle 0 to π/2 and charge
+q from polar angle π/2 to π. What is the electric field at the origin?

Here we begin by drawing the field lines on scratch paper, and note that from symmetry, that at the
origin, the electric field points exclusively in the +x̂ direction (to the right). This means that E = Exx̂ =
(E · x)x̂ = E cos(θ)x̂.1

Next, we parametrize the semicircle with the parameter θ. Here, θ is not the angle in polar coordinates,
but rather the angle between r̂ and x̂:

r̂

x̂

θ

Now, we calculate the linear charge density, λ = Q/L:

λ(θ) =

{
0 ≤ θ < π/2 +2q/πa

π/2 < θ ≤ π −2q/πa

The electric field in the x direction is then, with dq = adθ λ(θ):

Ex =

∫ π

0

k adθ λ(θ)

a2
cos(θ) =

∫ π

0

kλ(θ)

a
cos(θ)dθ =

∫ π/2

0

2qk

πa2
cos(θ)dθ−

∫ π

π/2

2qk

πa2
cos(θ)dθ =

2qk

πa2
−−2qk

πa2
=

4kq

πa2

So, the electric field is:

E(0, 0) =
4kq

πa2
x̂

1This all works out nicely because cosine is an even function



Problem 3. Point Charge

Consider a point charge Q inside an insulating shell of inner radius R and outer radius 2R with total charge
q. What is the potential everywhere if the potential at infinity is 0?

Begin by finding the enclosed charge as a function of radius. For 0 < r < R:

q(r) =

∫ r

0

dq = Q

For R ≤ r ≤ 2R:

q(r) =

∫ r

0

dq =

∫ R

0

dq+

∫ r

R

dq = Q+

∫ r

R

ρdV = Q+

∫ r

R

q
4
3π((2R)3 − (R)3)

4πr̄2dr̄ = Q+
3q

7R3

∫ r

R

r̄2dr̄ = Q+
q

7R3
(r3−R3)

For 2R < r <∞:

q(r) =

∫ r

0

dq =

∫ R

0

dq +

∫ 2R

R

dq +

∫ r

2R

dq = Q+ q

Here we have spherical symmetry, and so the electric field is parallel to the surface normal vector (E · dA =
EdA). Thus the electric field is in terms of the charges calculated above:

E(r) =
q(r)

ε0A(r)
r̂ =

q(r)

ε04πr2
r̂

The potential in the region 2R < r <∞ is, letting E · dr be:

V (r) =

∫ ∞

r

dr̄ E =

∫ ∞

r

dr̄
Q+ q

ε04πr̄2
=
Q+ q

4πε0

∫ ∞

r

dr̄
1

r̄2
=
Q+ q

4πε0

1

r

For R ≤ r ≤ 2R:

V (r) =

∫ ∞

r

dr̄ E =

∫ 2R

r

dr̄ E +

∫ ∞

2R

dr̄ E =
Q+ q

4πε0

1

R
+

∫ 2R

r

dr̄ E =
Q+ q

4πε0

1

R
+

∫ 2R

r

dr̄
Q+ q

7R3 (r̄3 −R3)

4πε0r̄2

=
Q+ q

4πε0

1

R
+

1

4πε0

∫ 2R

r

dr̄

[
Q

1

r̄2
+

q

7R3
r̄ − q

7

1

r̄2

]
=
Q+ q

4πε0

1

R
+

1

4πε0

[
(Q− q/7)

(
1

r
− 1

2R

)
+

q

14R3
(4R2 − r2)

]

We calculate at r = R, to simplify and save space:

V (R) =
Q+ q

4πε0

1

R
+

1

4πε0

[
(Q− q/7)

(
2

2R
− 1

2R

)
+

q

14R3
(4R2 −R2)

]
=
Q+ q

4πε0

1

R
+

1

4πε0

1

R

[
7Q+ 2q

14

]
=

1

4πε0

1

R

[
21Q+ 16q

14

]

For 0 < r < R:

V (r) =

∫ ∞

r

dr̄ E =

∫ R

r

dr̄ E +

∫ 2R

R

dr̄ E +

∫ ∞

2R

dr̄ E =
1

4πε0

1

R

[
21Q+ 16q

14

]
+

∫ R

r

dr̄ E

=
1

4πε0

1

R

[
21Q+ 16q

14

]
+

∫ R

r

dr̄
Q

4πε0r̄2
=

1

4πε0

1

R

[
21Q+ 16q

14

]
+

Q

4πε0

(
1

r
− 1

R

)
=

1

4πε0

(
7Q+ 16q

14R
+
Q

r

)



Problem 4. Conducting Plates

Consider three conducting plates with charge densities 5σ, 3σ and −σ. Then place the plates in the following
arrangement:

What is the charge on each surface? What is the electric field everywhere?

Here we use the ansatz provided in class, for any n parallel conducting plates, the net charge will distribute
evenly between the outer edges of the two bounding plates, while each setter of inner sides separated by
vacuum have equal and opposite charges (with an associated minimum of the potential energy). So, the
distribution of charges for n plates is:

σ1 σ2 −σ2 σ3 −σ3 σ4 −σ4 σ5 −σ5 σ6 . . . −σn σ1

First:
2σ1 =

∑
σgiven

Then:
σ1 + σ2 = σgiven,1 =⇒ σ2 = σgiven,1 − σ1

σ3 − σ2 = σgiven,2 =⇒ σ3 = σ2 + σgiven,2

σ4 − σ3 = σgiven,3 =⇒ σ4 = σ3 + σgiven,3

σ5 − σ4 = σgiven,4 =⇒ σ5 = σ4 + σgiven,4

σ6 − σ5 = σgiven,5 =⇒ σ6 = σ5 + σgiven,5

. . .

Inside every conductor, the electric field is 0. Now, each inner pair of surfaces forms a capacitor, so the field
is 2σi/2ε0 = σi/ε0. By the vector addition of electric fields, outside the capacitor the field is 2σ1/2ε0 = σ1/ε0.
For directions, a coordinate system and charges must be specified.

Our specific case is simpler:

σ1 =
1

2
(5σ + 3σ − σ) =

7

2
σ

σ2 = 5σ − 7

2
σ =

3

2
σ

σ3 =
3

2
σ + 3σ =

9

2
σ

The electric fields are then as above, substituting for σi. If we assume σ > 0, and let the +x̂ direction to
be towards the right, then all fields point in the +x̂ direction except the field outside and to the left, which
points in the −x̂ direction.



Problem 5. Short Questions

1. Given the following triangle, what is cos(α), what is sin(α)?

α

b

a

c

cos(α) = b/c, sin(α) = a/c

2. If V = k(x2 + y2 + z2), calculate the electric field.

E(x, y, z) = −2k(x, y, z)T

3. What are the SI units of λ, σ, and ρ?

[λ] = [C/m], [σ] = [C/m2], [ρ] = [C/m2]

4. What is the flux from a point charge q through (a) a spherical Gaussian surface of radius r (b) a
spherical Gaussian surface of radius 2r?

q/ε0, q/ε0

5. Draw the electric field lines for a point charge? What does this mean in the context of a Gaussian
surface that does not enclose the charge?

There is no net flux, yet there is a field inside the Gaussian surface.

6. Draw the electric field lines for a dipole. What does this mean in the context of a Gaussian surface
that encloses the dipole?

While there is no net flux, the electric field on the surface is not constant.

7. If the electric field at a distance r from a point charge has magnitude E, what is the magnitude of the
electric field at a distance of 10r? What does this mean for the potential energy of a point charge?

E/100

8. If the electric field at a distance r from an infinite sheet of conducting charge has magnitude E, what is
the magnitude of the electric field at a distance of 10r? What does this mean for the potential energy
of a point charge?

E

9. Given a square of charges q at (0, a), (a, 0), (0,−a), and (−a, 0), find the electric potential V at (0, 0).

V (0, 0) = 4kq/a



10. Given a square of charges q at (0, a), (a, 0), (0,−a), and (−a, 0), find the electric field E at (0, 0).

E = 0

11. What is the electric field Ez on the xy plane given by two charges z located at (0, 0, 1)T , (0, 0,−1)T ?

Ez = 0

12. There is no net charge inside any conductor (True/False)

True

13. There is no net charge inside any insulator (True/False)

False

14. What is the electric field inside a thin conducting shell of radius r with a total charge q?

E = 0, because V is constant

15. What is the electric field in between two infinite sheets of surface charge density σ? What is the electric
field outside?

Inside: E = 0, Outside: E = σ/ε0

16. Fluorine, Chlorine, Bromine, and Iodine are gas, gas, liquid, and solid at STP. These elements have
the same outer electron configurations of p5, yet their states of matter are due to electronic behavior
how can this be?

The larger the atom, the more electrons it has, so the larger its polarizability and its dipole moment.
Sufficiently large dipole moments can convince substances to condense into liquids and solids.


	Charged Cylinder
	Half of a Ring
	Point Charge
	Conducting Plates
	Short Questions

