Vectors

$\boldsymbol{v}=\left(v_{x}, v_{y}, v_{z}\right)$ is a vector with components v_{x}, v_{y}, and v_{z}. To add vectors we have $\boldsymbol{u}+\boldsymbol{v}=\left(u_{x}+v_{x}, u_{y}+v_{y}, u_{z}+v_{z}\right)$. To multiply we have the dot product

$$
\boldsymbol{u} \cdot \boldsymbol{v}=u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}
$$

or for angle θ between \boldsymbol{u} and \boldsymbol{v}

$$
\boldsymbol{u} \cdot \boldsymbol{v}=|\boldsymbol{u} \| \boldsymbol{v}| \cos (\theta)
$$

where the length of the vector is

$$
|\boldsymbol{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}
$$

The cross product is another multiply

$$
\boldsymbol{u} \times \boldsymbol{v}=\operatorname{det}\left|\begin{array}{ccc}
\hat{\boldsymbol{x}} & \hat{\boldsymbol{y}} & \hat{\boldsymbol{z}} \\
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right|
$$

where $\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}, \hat{\boldsymbol{z}}$ are the unit vectors (length 1) in the x, y, and z directions.
Velocity and Acceleration
The velocity is

$$
\boldsymbol{v}=\frac{d \boldsymbol{x}}{d t}
$$

the momentum is

$$
\boldsymbol{p}=m \boldsymbol{v}
$$

and the acceleration is

$$
\boldsymbol{a}=\frac{d \boldsymbol{v}}{d t}=\frac{d^{2} \boldsymbol{x}}{d t^{2}}
$$

As an integral equation
$\boldsymbol{x}(t)=x(0)+\int_{0}^{t} d \bar{t}\left(\boldsymbol{v}(0)+\int_{0}^{\bar{t}} d \overline{\bar{t}} \boldsymbol{a}(\overline{\bar{t}})\right)$
Forces and Newton's Laws
The total force is the sum of forces:

$$
\boldsymbol{F}_{\mathrm{tot}}=\sum_{i} \boldsymbol{F}_{i}=\boldsymbol{F}_{1}+\boldsymbol{F}_{2}+\boldsymbol{F}_{3}+\ldots
$$

Newton's $1^{\text {st }}$ law: when $\boldsymbol{F}_{\text {tot }}=0, \boldsymbol{a}=0$. Newton's $2^{\text {nd }}$ law: $\boldsymbol{F}_{\text {tot }}=m \boldsymbol{a}=d \boldsymbol{p} / d t$. Newton's $3^{\text {rd }}$ law: $\boldsymbol{F}_{A \rightarrow B}=-\boldsymbol{F}_{A \leftarrow B}$.

FORCES

The weight is the force that emerges from the linearization of gravity

$$
\boldsymbol{F}_{g}=m \boldsymbol{g}
$$

The force of a spring is

$$
\boldsymbol{F}(x)=-k x \hat{\boldsymbol{x}}
$$

Friction is a force that opposes motion. It is either static, in which case it opposes a force up up to magnitude $\left|\boldsymbol{F}_{s}\right|$, or dynamic/kinetic which exhibits a constant force $-\left|\boldsymbol{F}_{d}\right| \hat{v}$.

Energy

The kinetic energy is

$$
E_{k}=\frac{1}{2} m|\boldsymbol{v}|^{2}=\frac{|\boldsymbol{p}|^{2}}{2 m}
$$

Work W is the change in kinetic energy

$$
W=E_{k}\left(t_{2}\right)-E_{k}\left(t_{1}\right)
$$

where

$$
W=\int_{\boldsymbol{x}_{1}}^{\boldsymbol{x}_{2}} d \boldsymbol{l} \cdot \boldsymbol{F}
$$

So:

$$
\begin{aligned}
& W_{\mathrm{grav}}(y)=m g y \\
& W_{\mathrm{spr}}(x)=\frac{1}{2} k x^{2}
\end{aligned}
$$

From this we note that for conservative forces (forces that conserve energy):

$$
\boldsymbol{F}=-\boldsymbol{\nabla} W
$$

The power is

$$
P=\frac{d W}{d t}
$$

which is

$$
P=\boldsymbol{F} \cdot \boldsymbol{v}
$$

Momentum

The total momentum is conserved

$$
\boldsymbol{p}_{\mathrm{tot}}=\sum_{i} \boldsymbol{p}_{i}=\boldsymbol{p}_{1}+\boldsymbol{p}_{2}+\boldsymbol{p}_{3}+\ldots
$$

The change in momentum is known as the "impulse", where $\boldsymbol{F}=d \boldsymbol{p} / d t$

$$
\boldsymbol{J}=\boldsymbol{p}_{2}-\boldsymbol{p}_{1}=\int_{t_{1}}^{t_{2}} d \bar{t} \boldsymbol{F}_{\mathrm{tot}}
$$

In a collision, momentum is conserved. In an elastic collision, kinetic energy is conserved, and in an inelastic collision, kinetic energy is lost.

Center of Mass

The center of mass is

$$
\boldsymbol{x}_{\mathrm{com}}=\frac{\sum_{i} m_{i} \boldsymbol{x}_{i}}{\sum_{i} m_{i}}=\frac{\sum_{i} m_{i} \boldsymbol{x}_{i}}{m_{\mathrm{tot}}}
$$

Where we have

$$
\boldsymbol{p}_{\mathrm{tot}}=m_{\mathrm{tot}} \boldsymbol{v}_{\mathrm{com}}
$$

and for the total external forces

$$
\boldsymbol{F}_{\mathrm{ext}}=m_{\mathrm{tot}} \boldsymbol{a}_{\mathrm{com}}
$$

Equilibrium

Equilibrium is when all forces and torques sum to zero. Equilibrium is stable (when the potential creating the force/torque is concave up- $d^{2} W / d x^{2}>0$), or unstable (when the potential creating the force/torque is concave down- $\left.d^{2} W / d x^{2}<0\right)$.

Projectile Motion

For a projectile launched at θ, subject to $\boldsymbol{F}_{g}=-m g \hat{\boldsymbol{y}}$ we have positions

$$
x(t)=x(0)+v(0) \cos (\theta) t
$$

$$
y(t)=y(0)+v(0) \sin (\theta) t-\frac{1}{2} g t^{2}
$$

where the velocities are

$$
\begin{gathered}
\boldsymbol{v}(t) \cdot \hat{\boldsymbol{x}}=\boldsymbol{v}(0) \cdot \hat{\boldsymbol{x}} \cos (\theta) \\
\boldsymbol{v}(t) \cdot \hat{\boldsymbol{y}}=\boldsymbol{v}(0) \cdot \hat{\boldsymbol{y}} \sin (\theta)-g t
\end{gathered}
$$

Angular Motion

Rotational motion is described by an angle $\boldsymbol{\theta}$ and an angular velocity

$$
\boldsymbol{\omega}=\frac{d \boldsymbol{\theta}}{d t}
$$

This is then changed by a torque $\boldsymbol{\Gamma}$

$$
\boldsymbol{\Gamma}=I \frac{d \boldsymbol{\omega}}{d t}=I \frac{d^{2} \boldsymbol{\theta}}{d t^{2}}
$$

which is given by

$$
\boldsymbol{\Gamma}=\boldsymbol{r} \times \boldsymbol{F}
$$

where the moment of inertia is

$$
I=\sum_{i} m_{i}\left|\boldsymbol{r}_{i}\right|^{2}
$$

The parallel axis theorem gives I for rotation distance d away from the com

$$
I(d)=I_{\mathrm{com}}+m_{\mathrm{tot}} d^{2}
$$

In analogy to linear motion
$\boldsymbol{\theta}(t)=\boldsymbol{\theta}(0)+\int_{0}^{t} d \bar{t}\left(\boldsymbol{\omega}(0)+\int_{0}^{\bar{t}} d \overline{\bar{t}} \boldsymbol{\Gamma}(\overline{\bar{t}})\right)$
The kinetic energy is then $(\boldsymbol{v}=R \boldsymbol{\omega})$

$$
E_{k}=\frac{1}{2} I|\boldsymbol{\omega}|^{2}
$$

The power is $P=\boldsymbol{\Gamma} \cdot \boldsymbol{\omega}$ and work is

$$
W=\int_{\theta_{1}}^{\theta_{2}} d \boldsymbol{\theta} \cdot \boldsymbol{\Gamma}
$$

The angular momentum of a particle is

$$
L=r \times p
$$

or for an extended object

$$
L=I \omega
$$

Whence we have

$$
\boldsymbol{\Gamma}_{\mathrm{tot}}=\frac{d \boldsymbol{L}_{\mathrm{tot}}}{d t}
$$

Uniform Circular Motion

In uniform circular motion

$$
|\boldsymbol{v}|=\frac{2 \pi R}{T}
$$

No tangential, only radial acceleration

$$
\boldsymbol{a} \cdot \hat{\boldsymbol{r}}=\frac{|\boldsymbol{v}|^{2}}{R}=\frac{4 \pi^{2} R}{T^{2}}
$$

Physics 1A at UCLA \diamond Formula Sheet (1 of 2)

Gravitation

It turns out that $\boldsymbol{F}=m \boldsymbol{g}$ is only an approximation, which holds since the radius of the earth is nearly constant. More generically:

$$
\boldsymbol{F}_{g}=G \frac{m_{1} m_{2}}{r^{2}} \hat{\boldsymbol{r}}
$$

where the generating potential is

$$
W=-G \frac{m_{1} m_{2}}{r}
$$

So we see that

$$
\boldsymbol{g}=\frac{G m_{\text {earth }}}{r_{\text {earth }}^{2}} \hat{\boldsymbol{r}}
$$

