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We study the three-dimensional transition-metal pnictide material TaAs using quantum oscilla-
tions in the longitudinal resistivity (Shubnikov–de Haas effect) at temperatures ranging from 2.2 K
to 10 K. We show that (1) TaAs exhibits a negative magnetoresistance (chiral anomaly) consistent
with the presence of Weyl nodes near the Fermi level, (2) the effective mass varies linearly with
the applied field, consistent with a linear dispersion at the Fermi energy and a degeneracy lifted
through Zeeman splitting, and (3) the geometric phase accumulated by electrons during cyclotron
orbits is γ = (0.910 ± 0.043)π, indicating the presence of Weyl nodes. We conclude that TaAs is a
Weyl semimetal.

INTRODUCTION

Fermions obey the Dirac Equation:

(iγµ∂µ −m)Ψ = 0 (1)

The γµ are 4-matrices, and we can define the chiral
projection operators:

L ≡ 1
2 (1− iγ0γ1γ2γ3) (2)

R ≡ 1
2 (1 + iγ0γ1γ2γ3) (3)

So that the Fermion field can be written as a combina-
tion of its “left handed” and “right handed” components:

Ψ = LΨ +RΨ (4)

Setting the mass to zero decouples the Dirac equation
into left handed and right handed solutions. It so hap-
pens that these solutions, known as Weyl fermions, are
irreps of the Lorentz group and so can be used to con-
struct any Fermion field.

Semimetals are compounds in which multiple bands
cross the Fermi surface. A possible semimetal of interest
is one with intersecting bands at the Fermi surface, and
a linear dispersion relation at the Fermi surface demon-
strating Fermi arcs. Such a material would host Weyl
fermions at these intersections or Weyl nodes.

In 2015, a number of groups reported ARPES measure-
ments of the electronic structure of TaAs that proved it
is a Weyl semimetal [1–3]. Soon thereafter, studies of
quantum oscillations in TaAs bolstered this result [4, 5].

We reproduce these results with the Shubnikov de
Haas Effect (quantum oscillations in longitudinal resis-
tance) by showing that: (1) TaAs exhibits a negative
magnetoresistance consistent with the presence of Weyl
nodes near the Fermi level, (2) the effective mass varies
linearly with the applied field, consistent with a linear
dispersion at the Fermi energy, and (3) the geometric
phase accumulated by electrons during cyclotron orbits
is γ = (0.910± 0.043)π.

Effective Mass and Cyclotron Motion

In a solid, electrons respond to applied forces with an
effective mass, m∗ such that:

F = m∗a (5)

Therefore, electrons can be treated as free with an ef-
fective mass, instead of as experiencing a potential:

E =
p2

2m∗ (6)

Which directly leads to:

1

m∗ =
∂2E

∂2p
(7)

Where momentum is given by the de Broglie relation:

p = h̄k (8)

An electron in free space subject to a constant perpen-
dicular magnetic field of strength B, will orbit in circles.
Representing this in the Hamiltonian formalism in the
Landau gauge:

H =
1

2me
[p2x + (py + eBx)2] (9)

Whose spectrum is Landau Levels for integers n > 0:

En = h̄ωc
(
n+ 1

2

)
(10)

Where ωc is the cyclotron frequency of the oscillations:

ωc =
eB

me
(11)

This means the frequency in a solid for constant α is:

ω∗
c =

eB

m∗ =
eB

αme
(12)
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Shubnikov de Haas Effect

Now we note that the electronic density of states is
high near the Landau Level center and low between Lan-
dau Levels. Additionally, the Landau Level spacing is
inversely dependent on the magnetic field, so the density
of states at the Fermi energy will oscillate periodically in
1/B as the applied magnetic field is varied.

Quantities including the resistance depend on the den-
sity of states at the Fermi energy, and the oscillations in
the resistance for varied applied magnetic field are known
as the Shubnikov de Haas Effect.

In particular, we will be interested in the longitudinal
resistivity, whose oscillations are observed in ∆ρxx:

∆ρxx(B, T ) = ρxx(B, T )− ρxx(B, Thigh) (13)

Usually, ∆ρxx(B, T ) > 0, however in Weyl semimetals,
∆ρxx can become negative, indicating the chiral anomaly
of the Weyl nodes.

Lifshitz-Kosevich Formalism

These quantum oscillations will be attenuated by en-
vironmental factors. We address this using the Lifshitz-
Kosevich formalism, which relates attenuation factors
arising from finite temperature, impurity scattering and
spin-splitting through the formula [7]:

∆ρxx ∝ RTRDRS (14)

The expressions in a three dimensional metal yield:

∆ρxx ∝
2π2kT/h̄ω∗

c

sinh(2π2kT/h̄ω∗
c )

exp
(
−πmb

eBτ

)
cos

(
πgms

2me

)
(15)

With temperature independent RD and RS , and sub-
stituting for ω∗

c (in SI units):

∆ρxx(B, T ) ∝ 14.6932α T/B

sinh(14.6932α T/B)
(16)

For fixed B and varying T , the effective mass m∗ =
αme may be interpolated.

At a Weyl node, the dispersion is linear, and so the
effective mass goes to zero. As the degeneracy at the
node is lifted through an applied magnetic field in Zee-
man splitting, the effective mass increases linearly.

Geometric Phase

In the absence of environmental coupling, the wave-
function as dependent on time is the initial wavefunction
propagated by the dynamic evolution operator and the

FIG. 1. A sample as photographed under optical microscope.
Insert emphasizes the dimensions of the conducting region.
Sample dimensions between the inner leads are: length =
355±21 µm, width = 351±5 µm, and depth = 50±6 µm. This
sample did not produce oscillations, so we analyzed another
group’s data, and considered oscillations of resistance rather
than resistivity since the sample dimensions were unknown.

geometric evolution operator, represented here by their
eigenvalues, θ(t) and γ(t), respectively:

ψ(t) = ψ(0)eiθ(t)eiγ(t) (17)

The dynamic phase factor is:

θ(t) = − 1

h̄

∫ t

0

dt̄E(t̄) (18)

The geometric phase factor about a path P is:

γ(P ) = i

∮
P

〈ψ(r)|∇r|ψ(r)〉 · dr (19)

Here we are interested in the path traversed by an elec-
tron in one cyclotron orbit. In a normal metal the geo-
metric phase will be 0, while if a Weyl node is enclosed
in the cyclotron orbit, the geometric phase will be π. [6]

The Lifshitz-Onsager quantization rule gives:

h̄An
eB

= 2πn+ (1 + 2δ)π − γ (20)

So, for oscillation frequency f , and constant δ we have:

∆ρxx(B, T ) = A(B, T ) cos(2πf/B + [(1 + 2δ)π − γ])
(21)
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EXPERIMENTAL METHODS

We were given a TaAs single crystal by the Ni research
group. We then prepared the sample by using fine sand
paper to remove the oxide layer on the sample. Next,
we connected four wires to the sample using conductive
silver glue. We then measured sample dimensions. Next
we soldered the wires to the four-wire voltage electrodes
of a DC measurement puck. Note that we need to use a
four-wire measurement since we use small currents and
we expect the resistivity of our sample to be low, and
voltages can be more accurately measured than currents.

We then applied magnetic fields perpendicular to the
sample (and presumably the crystal lattice) in steps of
roughly 0.009 T from 9 T to −9 T at temperatures of
2.2, 3.0, 4.0, 6.0, 8.0, and 10.0 K using a Quantum De-
sign DynaCool Physical Property Measurement System
and measured the resistance using a four-wire resistance
measurement.

ANALYSIS AND RESULTS

We begin by processing the measured data Fig. 2 by
subtracting the high-temperature-behavior background
as in Eqn. 13 and noting that the longitudinal resistance
is even under inversion of the magnetic field, while the
transverse resistance is odd under inversion of the mag-
netic field. A function f(x) may be written as the sum
of an even function and an odd function:

f(x) = 1
2 (f(x) + f(−x))︸ ︷︷ ︸

even

+ 1
2 (f(x)− f(−x))︸ ︷︷ ︸

odd

(22)

This yields the Shubnikov de Haas oscillations as
shown in Fig. 2. Considering these at each of the tem-
peratures and plotting the resistance against the inverse
field shows oscillations periodic in 1/B as in Fig. 3, as
illustrated by the Fourier transform of the oscillations in
Fig. 3.

A fit of the temperature-dependent amplitudes at the
main pocket using the Lifshitz-Kosevich formalism as in
Eqn. 16 yields the effective mass as shown in Fig. 4. Eval-
uating this for the other peaks shows that the effective
mass is linear in the applied field as shown in Fig. 4.

Additionally, the geometric phase γ arises in the prod-
uct of the linear function A(T,B) with a modulating co-
sine as in Eqn. 21. If we take one point per cycle at
the same phase of a linear function modulated by a pe-
riodic function and plot the points versus the oscillation
index, the point of intersection with the x-axis, x, gives
the phase (mod 2π), which enables us to calculate the
geometric phase as shown in Fig. 5. Mathematically:

2πx = (1 + 2δ)π − γ ⇔ γ = [1 + 2(δ − x)]π (23)

Results

We observe that TaAs exhibits a negative magnetore-
sistance at some values of the applied field consistent
with the presence of Weyl nodes near the Fermi level.
Additionally, the effective mass varies linearly with the
applied field, as m∗/me = (0.04401± 0.00036)B, consis-
tent with a linear dispersion at the Fermi energy and a
degeneracy lifted through Zeeman splitting. Finally, we
find that the geometric phase accumulated by electrons
during cyclotron orbits is γ = (0.910±0.043)π, indicating
the presence of Weyl nodes.

We believe that the dominant source of error in our
measurements was the alignment of the crystal with the
magnetic field which produces a systematic error.

CONCLUSION

We observed quantum oscillations in the longitudinal
resistivity of a TaAs single crystal subject to an applied
magnetic field. We observed the amplitudes were some-
times negative which indicates a chiral anomaly. Addi-
tionally, we analyzed the oscillations and found that the
effective mass varied linearly with the applied field, and
that the geometric phase accumulated by electrons dur-
ing a cyclotron orbit agreed with π. These observations
support the hypothesis that TaAs is a Weyl semimetal.

If we were to repeat the experiment, we would have
liked to test more samples and explore their behavior in
higher fields at more temperatures (colder and warmer).
It would also be interesting to vary crystal orientation
and map the Fermi surface.
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FIG. 2. (left) Measured longitudinal resistivity at a variety of temperatures. Oscillations are of larger amplitude at lower
temperatures. Plot is not an even function due to imperfections in the electrode alignment and angle of the sample with respect
to the applied field. (right) Oscillations in the measured 2.2 K data extracted through (1) subtracting high temperature behavior
(10 K data), and (2) made even to remove the transverse resistance and account for potential alignment issues. We observe
negative longitudinal resistance at many fields, which corresponds to a chiral anomaly and is consistent with the presence of
Weyl nodes near the Fermi energy.
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Shubnikov de Haas Oscillations in TaAs
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FIG. 3. (left) Shubnikov de Haas oscillations in the longitudinal resistivity of TaAs sample at temperatures from 2.2 to 10 K.
(right) Fourier decomposition of resistivity oscillations. We observe peaks at frequencies near 7, 12, and 20 T.
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FIG. 4. (left) Determination of the effective mass at the 7.46 T peak by fitting the thermal attenuation term of the Lifshitz-
Kosevich formula to the temperature dependence of the peak amplitude. We find the effective mass is m∗ = (0.0509±0.0011)me.
(right) Effective masses determined at each extrema of the resistivity oscillations using the Lifshitz-Kosevich formalism. We
observe that the measured effective masses vary linearly with the applied field. We explain this by supposing there exists a
Weyl node at the surface at zero field whose degeneracy is lifted by the applied magnetic field.
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FIG. 5. The magnetic field values corresponding to the
low frequency minima are plotted with indices (integer offset
from the Landau Level index) to give the phase offset in the
interval [0, 2π]. We observe the x-intercept is at 0.045±0.022,
corresponding to a geometric phase of γ = (0.91 ± 0.043)π in
the two dimensional limit of δ = 0 [8]. Uncertainties are on
the order of the marker size.
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