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Superconductors are perfect diamagnets up to a critical field where they become normal metals.
This means that if a superconductor is the core of an inductor, then as the temperature and field are
varied, the critical field as a function of temperature can be determined by the change in resonant
frequency of an LC circuit. We studied samples of indium and lead at a variety of temperatures
and field strengths and observed that both indium and lead samples experienced jumps in frequency
consistent with our expectations for superconductors. We then used the BCS model of weak-
coupling superconductors to determine the critical temperatures and fields of indium and lead as
3.261±0.043 K, 0.01989±0.00051 T and 7.14±0.12 K, 0.07531±0.0014 T respectively. Additionally,
we show that within the BCS theory, indium is a weak-coupling superconductor and lead is a strong-
coupling superconductor.

INTRODUCTION

Many metals undergo a sharp transition between a fi-
nite resistance and zero resistance at a low temperature
known as the critical temperature. This was first ob-
served in 1911 by Kamerlingh-Onnes, where the resis-
tance of a mercury sample dropped from 0.12 Ω just
above 4.2 K to an immeasurably small resistance just
below 4.2 K [1]. The discovery of superconductivity was
followed in 1933 by Meissner and Ochsenfeld’s discovery
that these superconductors acted as perfect diamagnets
and expel all magnetic fields up to a critical field where
the superconductivity breaks down [2].

A first phenomenological theory was constructed by
Ginzburg and Landau in 1950 to describe the critical be-
havior at the superconducting transition [3]. In 1957,
Bardeen, Cooper, and Schrieffer presented their micro-
scopic theory of electron-phonon pairing into a bosonic
condensate at low temperatures [4]. While the BCS
Model described all superconductors known at the time,
the Type I superconductors, it predicted that no super-
conducting condensate could exist above ∼ 20 K. In the
1980s, Type II superconductors with up critical temper-
atures of over 100 K were discovered [5, 6].

Here we study two samples of the Type I superconduc-
tors: Indium and Lead, and relate the measured behav-
ior to BCS Theory. In particular, BCS theory predicts
a sharp transition at the critical field Hc from supercon-
ducting to normal. In weak-coupling BCS theory, Hc is
expected to be 0 at the critical temperature Tc, and reach
a maximal value at T = 0 in accordance with:

Hc(T ) = Hc(0)

[
1−

(
T

Tc

)2
]

(1)

Using the jump in resonant frequency of an LC cir-
cuit at the superconducting transtion, we determined the
critical temperatures and fields of Indium and Lead as
3.261± 0.043 K, 0.01989± 0.00051 T and 7.14± 0.12 K,
0.07531± 0.0014 T respectively.

BCS Theory

The thermodynamic ground state of most normal met-
als is superconductivity. This is because “the interac-
tion between electrons resulting from virtual exchange of
phonons (may) dominate the repulsive screened values of
the repulsive screened Coulomb interaction,” leading to
a lower energy state [4]. This state is the condensation
of bosonic Cooper pairs into a collective ground state
at energy ∆ below the Fermi energy. Cooper pairs are
spin-0 (opposed spins), but a strong magnetic field may
make it favorable for the individual electronic spins to
align with the field with energy −µH rather than form
a condensate. This competition will determine whether
the actual state is superconducting or normal at a given
field and temperature. Now, we consider the first law of
thermodynamics for this magnetic system:

dE = TdS −MdH (2)

The difference in entropies between phases at Tc is:

SN − SS = −Hc(T )
∂Hc(T )

∂T
(3)

Correspondingly the difference in specific heats are:

CN − CS = −Tc
(
∂Hc

∂T

)2

Tc

(4)

This indicates that at Hc = 0, the transition is second
order, involving the divergence of a second derivative,
while with Hc 6= 0, the transition is first order, involving
the discontinuity of a first derivative.

In weak-coupling BCS theory, where kTc � h̄ωphonon,
the superconducting energy gap 2∆0 at T = 0 is given in
terms of the Euler-Mascheroni constant γ:

∆0 =
π

eγ
kTc ≈ 1.76388 kTc (5)
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The difference in free energy between the normal and
superconducting states is given by the density of states
at the Fermi Energy:

EN − ES =
1

2
D(εF )∆2

0 (6)

Which is also:

EN − ES =
Hc(0)2

2
(7)

Therefore:

Hc(0) =
√
D(εF ) ∆0 (8)

Now, in free electron theory, the density of states is:

D(εF ) =
V

2π2

(
2m

h̄2

)3/2

ε
1/2
F (9)

Combining equations we have:

Hc(0) =

[
21/4

eγ
V 1/2

(
m

h̄2

)3/4
]
ε
1/4
F kTc (10)

Where with Tc in Kelvin and εF in electron volts, a
unit volume of 1 cm3, and the critical field in Tesla at
T = 0 for a weak-coupling BCS superconductor is:

Hc(0) = 0.00502157 ε
1/4
F Tc (11)

Using this expression, and that for indium Tc =
3.408 K and εF = 8.63 eV, and that for lead Tc = 7.195 K
and εF = 9.47 eV [7–9], we find the BCS theory predicts:

H indium
c (0) = 0.02933 T (12)

H lead
c (0) = 0.06338 T (13)

Where the accepted experimental values are [8–10]:

H indium
c (0) = 0.02857 T (14)

H lead
c (0) = 0.08034 T (15)

Therefore, we see that indium is in the weak coupling
limit while lead is not. This is to be expected since the
weak coupling limit is strictly, Tc → 0 K, and 3.4 K is
closer to 0 K than 7.2 K.

EXPERIMENTAL METHODS

Superconductors are perfect diamagnets, while normal
metals are not. This means that if a superconductor is
the core of an inductor, then as the temperature and
field are varied, Hc(T ) can be determined by the change
in resonant frequency of an LC circuit. In particular, a
solenoid has inductance:

L = µ
N2A

l
(16)

L C
f−

+

FIG. 1. LC resonant circuit with frequency selector shaded
in gray. The resonant frequency of the LC circuit is f =
1/2π

√
LC. The circuit works by utilizing the fact that the

impedance of the LC oscillator are only large at the resonant
frequency, and so the opamp correspondingly amplifies this
frequency f . There is a DC-blocking capacitor on the feed-
back of the opamp.

When the sample becomes superconducting the permit-
tivity µ decreases, the inductance decreases, and the res-
onant frequency increases. When this happens is com-
pared with the physical conditions to determine Hc(T ).
The resonant frequency is measured using a circuit as
shown in Fig. 1.

Temperature

Type I superconductors need to be cooled to less than
10 K to become superconducting. Since the ambient
temperature is roughly 300 K, this requires substantial
cooling and insulation from the environment. This was
achieved using the setup illustrated in Fig. 2.

First the sample was inserted, then the system was
isolated by the outer vacuum and vacuums with gas were
created, then the system was cooled to 77K with liquid
nitrogen, and finally liquid helium was introduced and
cooled to 1.7 K by pumping on it. The temperature was
then controlled by warming the sample to a temperature
above 1.7 K with an inductive heater coil. Temperature
was measured through the resistance of a thermometer
as shown in Fig. 3.

Applied Field

We varied the applied field on the superconducting
samples by varying the current in a superconducting
solenoid immersed in the liquid helium as shown in Fig. 4.
The current was supplied using a constant current source
that was controlled by a voltage supplied by a lock-in am-
plifier controlled by a computer. We were given that the
solenoid generated 0.1699 T/A and determined in Fig. 5
that the constant current source produced 0.2833 A/V
supplied, so the applied field in terms of the voltage was:

H = 0.04813V (17)
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sample

FIG. 2. Cross section of cooling apparatus used to cool
sample as low as 1.7 K. From the outside in: pure vacuum,
liquid nitrogen at 77 K, vacuum with a little helium gas, liquid
helium pumped on by a vacuum at 4.2 to 1.7 K, vacuum with
a little helium gas, and sample.
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FIG. 3. Determination of temperature as a function of re-
sistance from given temperature-resistance data for the ther-
mometer/temperature controller.

Measurement

We collected data using the following procedure:

1. Set temperature using resistance
2. Vary the field

• Perform voltage sweep
• Measure resonant frequency

3. Save data

We performed this procedure for eight temperatures
from 1.7 K to the critical temperature of the indium and
lead samples.

We then determined the critical field at each of these
temperatures by performing a Gaussian fit to the deriva-
tive of the resonant frequency with respect to the applied
field as shown in Fig. 6.
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Constant Current Source
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Magnetic Field Solenoid

FIG. 4. The magnetic field experienced by the sample comes
from a superconducting solenoid in the liquid helium that
encompasses the sample. The field of this solenoid is given
as 0.1699 T/A, where the current is produced by a constant
current source. The current produced by the constant current
source was determined to be 0.2833 A/V for the currents we
used, see Fig. 5 below. While the voltage is produced by a
lock-in amplifier in accordance to values set with a computer.
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FIG. 5. Determination of the current produced by the con-
stant current source for voltage provided. Note the small val-
ues and resulting quantization error in the measured current.
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Determination of Critical Field in Indium at 3.01 K
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2 (H 0.00704
0.00068 )2)
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FIG. 6. The critical field was determined by numerically
taking the derivative of the frequency with respect to the
applied field and then performing a Gaussian fit. This method
works for both sharp and noisy transitions, where we report
Hc = mean± std of the Gaussian.
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FIG. 7. Determination of critical field for indium and lead as a function of temperature. The fit is to the form of Eqn. 1,
which gives the critical temperature and the critical field at zero temperature. We determine that the critical temperatures
and fields of Indium and Lead as 3.261± 0.043 K, 0.01989± 0.00051 T and 7.14± 0.12 K, 0.07531± 0.0014 T respectively. The
theoretical fit from the values in the literature is indicated in orange; differences are discussed in the error analysis section.

RESULTS

We observed that both indium and lead samples when
placed as the core of an inductor experienced jumps in
frequency, dependent on the magnetic field and temper-
ature, consistent with our expectations for superconduc-
tors. From these jumps in frequency we constructed
plots of Hc(T ) in Fig. 7 and extracted critical temper-
atures and fields of Indium and Lead as 3.261± 0.043 K,
0.01989±0.00051 T and 7.14±0.12 K, 0.07531±0.0014 T
respectively from fits to Eqn. 1.

Additionally, our calculations using known values from
the literature indicate that Indium is a weak-coupling
superconductor while lead is a strong-coupling supercon-
ductor. This means that Eqn. 1 is expected to be a good
fit for indium and a less good fit for lead. Due to sub-
stantial systematic errors, we withhold comment on the
appropriateness of Eqn. 1 to fit our data.

Error Analysis

While there are relatively small differences between
the critical temperatures we determined and the val-
ues literature, there are much larger differences in the
critical field. We believe that this difference in crit-
ical field could originate from sample dependent fea-
tures/impurities, however, we suspect that since the dif-
ference between the measured and the literature increases
linearly with increasing field that the conversion factor
from the voltage to the applied field. In particular, the
solenoid might produce less than the given 0.1699 T/A.
We believe this systematic error might be as high as 20%.

The voltage produced by the lock-in amplifier and the
frequency measurements were determined to four signif-

icant figures, with random uncertainties. Additionally,
since the thermometer and sample were not exactly the
same temperature, we estimate that the temperature was
known to two significant figures. We conclude that the
largest source of error was systematic, and with the de-
termination of the applied magnetic field.

CONCLUSION

Superconductors are perfect diamagnets up to a crit-
ical field where they become normal metals. This is a
result of a competition between Cooper pairs and mag-
netic potential energy. Here we used this fact to measure
the critical field of indium and lead as a function of tem-
perature by using the samples as the core of an inductor.
We used this data within the BCS model to determine
the critical temperature and field of our samples. Addi-
tionally using known properties of indium and lead, we
showed that within the BCS model, indium is a weak-
coupling superconductor while lead is a strong-coupling
superconductor. If we were to repeat the experiment we
would have liked to determine the current to field ratio
of field-generating solenoid.

The method of detecting a resonant frequency is gen-
eral to any detection application where resistance, ca-
pacitance, or inductance change and are used to set the
resonant frequency of a circuit. In lab 1 we saw the appli-
cation of an RC circuit to determine the phase transition
in the dielectric constant of BaTiO3. Another applica-
tion using another LC circuit would be to measure the
thickness of a deposited film on the surface of a capacitor
to the nearest nanometer with a piezoelectric dielectric
through shifts in the capacitance.
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