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Barium Titanate, BaTiO3 is an crystal often used as a dielectric in capacitors since it has a large
dielectric constant across a wide range of temperatures. Cooling through 120 ◦C, BaTiO3 changes
from a cubic to a tetragonal crystal structure. Some theoretical understanding of a the transition’s
effect on the dielectric constant may be gained by studying the theory of second order phase
transitions and comparing the transition between paraelectric and ferroelectric, to the transition
between paramagnetic and ferromagnetic phases, but the transition observed here is first order.
We determined the dielectric constant of a BaTiO3 crystal over 40 ◦C to 180 ◦C using the ratio of
in-phase and quadrature voltages across the crystal in series with a resistor. We observed a first
order phase transition at 119.45 ± 0.55 ◦C and estimate that if the second order phase transition
had not been interrupted it would have occurred at Tc = 89.96± 0.57 ◦C.

INTRODUCTION

Barium Titanate, BaTiO3 is a crystal noted for its
high dielectric constant k, which can reach 104, where
the dielectric constant of a vacuum is k = 1. This makes
BaTiO3 a useful dielectric material for capacitors. In this
lab, we are interested in explaining and understanding
the dielectric behavior of BaTiO3 with respect to tem-
perature, and in particular at its transition.

At temperatures above 120 ◦C at ambient pressures,
BaTiO3 exists in a cubic (perovskite) crystal structure.
Yet, when cooled below 120 ◦C, BaTiO3 undergoes a
phase transition to tetragonal crystal symmetry. This
is significant because in cubic symmetry there is no net
electric dipole, while in tetragonal symmetry there is an
electric dipole moment. This is the result of broken in-
version symmetry in the tetragonal crystal structure.

We can then write the Hamiltonian for this system in
the presence of electric field E with polarization P :

H = H0(p, q) − P ·E (1)

The polarization is a first derivative:

P = −
(
∂H

∂E

)
T

(2)

The permittivity is a second derivative:

ε = −
(
∂2H

∂E2

)
T

(3)

Noting that the formulary is exactly identical to that of
the Ising Model transition, with a change of labels, where
H = H0(p, q) −M ·B, with magnetization M = −∂BH
and susceptibility χ = −∂BBH, we may use the results
of that model with suitable rebranding to realize some
theoretical understanding of the BaTiO3 system.

For a second order phase transition, from the Ising
Model, and also the mean field theory of ferromagnets, we

expect that for temperatures above the transition tem-
perature, for some constant c:

ε =
c

T − Tc

This behavior does not happen. The permittivity does
not diverge. Rather this second order transition is in-
terrupted by the first-order phase transition correspond-
ing to a discontinuity in the polarization when inversion
symmetry is broken. We observed a first order transition
at 119.45 ± 0.55 ◦C and estimate that if the second or-
der phase transition had not been interrupted it would
have occurred at Tc = 89.96 ± 0.57 ◦C with constant
c = 1.0030 ± 0.0068 × 108 F K/m.

EXPERIMENTAL METHODS

For this experiment, three circuits are involved in the
manipulation and measurement of the crystal sample.
Principally, the crystal is connected in series with a re-
sistor, driven by a sinusoidal voltage, with the in-phase
and quadrature voltages measured across the capacitor
using a lock-in amplifier. Additionally, the sample is
heated with a resitive heater coil, and the temperature is
measured by the variation in voltage across a platinum
resistor at constant current. The sample and platinum
resistor were housed in a thermally insulated chamber,
surrounded by the heater coil.

Through comparison of the quadrature to the in-phase
voltages, with scaling for the resistance and frequency,
the capacitance of the sample is determined as a function
of temperature.
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FIG. 1. Thermometer circuit. Current is provided by a
constant current power source and resistance variations are
determined by measuring the voltage across the resistor and
using Ohm’s Law, R(T ) = V (T )/I.
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FIG. 2. Resistance as a function of temperature along with
a least-squares linear fit. Data from Joshua Buttery and Paul
Smigliani: our resistances inexplicably varied on the first day,
but obeyed the Buttery-Smigliani relation on the second day.
We found that R(T ) = 0.363(T − 282.0) for T in Celsius.
Note that adding a 1 Ω resistor (such as wires) in series with
the platinum resistor insignificantly affects the results and is
accounted for by the interpolation. Error bars are smaller
than the marker size.

Temperature

For many metals, over a moderate temperature range,
their resistance is proportional to the temperature:

Rth(T ) = r(T − T0) (4)

If a resistive circuit is built with a metal resistor, and
a constant current power source, the temperature can be
determined by the voltage with Ohm’s Law, R = V/I:

T (Vth) = T0 +
Vth
Ir

(5)

In particular, we assembled a thermometer circuit with
a constant current source of 0.01 A and a platinum re-
sistor, and measured the resistance with a desktop mul-
timeter, as shown in Fig. 1. We determined T0 and r by
measuring the resistance in ice water 0 ◦C, at room tem-
perature 22 ◦C, and in boiling water 100 ◦C, and inter-
polating a least squares fit, as shown in Fig. 2. We found

R

C

Vin Vout

FIG. 3. RC circuit design. Vin is a sinusoidal voltage, R is
fixed, C is the crystal, and Vout connects to a lock-in amplifier.
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FIG. 4. Frequency response of an RC Circuit to sinusoidal
driving. The graph is centered on the 3 dB point, where
|VIP| = |VQ|, of ω = 1/τ = 1/RC which is 5 kHz here. We
observe good agreement between the theoretical and experi-
mental values. Error bars are roughly the marker size.

r = 0.36312± 0.00038 Ω/K and T0 = −282.01± 0.34 ◦C.
At 0.01 A the temperature is found using the expression:

T (Vth) =
Vth

0.0036312
− 282.01 (6)

Capacitance

We consider the frequency response of the RC circuit
shown in Fig. 3. The impedance of the circuit with noth-
ing attached to the output is:

Z = R+
1

iωC
(7)

This means that the output voltage is:

Vout =
1

iωC

R+ 1
iωC

Vin (8)

=
1

1 + iRωC
Vin (9)

=
1

1 + iRωC

1 − iRωC

1 − iRωC
Vin (10)

=
1 − iRωC

1 +R2ω2C2
Vin (11)
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Thus, the in-phase and quadrature voltages are:

VIP = Re(Vout) =
1

1 +R2ω2C2
Vin (12)

VQ = Im(Vout) =
−RωC

1 +R2ω2C2
Vin (13)

We assembled the circuit shown in Fig. 3 with a
19.98 kΩ resistor and a 0.0100 µF capacitor. We pro-
duced a sinusoidal signal with a function generator, and
measured the in-phase and quadrature components of
Vout with a lock-in amplifier. We observed good agree-
ment between the theoretical and experimental values
over a range of frequencies as shown in Fig. 4.

Now, we note that by taking the ratio of the quadra-
ture to the in-phase voltage, and dividing by the (known)
resistance and angular frequency, we find the total capac-
itance of the circuit:

C(T ) =
1

Rω

∣∣∣∣ VQ(T )

VIP (T )

∣∣∣∣ (14)

Now, the total capacitance is the sum of the capaci-
tance of the sample and the stray capacitance from the
wires in the circuit:

C(T ) = Csample(T ) + Cstray (15)

We then assembled the measurement circuit, with
Vin = 1.078 V and R = 1.0789 Ω, but instead of mea-
suring the crystal as the capacitor, we measured a short-
ing wire. The 3 dB point of this circuit was at f =
1.4885 kHz, which corresponds to Cstray = 1/2πRf =
9.910 × 10−11 F.

We then measured the dimensions and mass of the
crystal, shown at left in Fig. 5, and found that it had
an area of approximately A = 1.5 mm2 and a mass of
2.3 mg. With a density of 6.02 g/cm3 this corresponds
to a thickness of d = 2.55×10−4 m. For a given dielectric
constant k the capacitance is:

C(T ) =
ε0A

d
k(T ) (16)

Or, rearranging to find the dielectric constant:

k(T ) =
d

ε0A
C(T ) (17)

Measurement

We drove our circuit with a f = 1488.5 Hz sine wave of
amplitude 1.078 V, used a 1.0789×106 Ω resistor and de-
termined that the stray capacitance was 9.910×10−11 F.
We then measured the quadrature and in-phase voltages
across the sample, and the voltage across the platinum

FIG. 5. BaTiO3 samples. The sample we used is at left and
has a mass of 2.3 mg and an area of approximately 1.5 mm2.
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FIG. 6. Temperature dependence of dielectric constant in
BaTiO3. Near the critical temperature of 119.4 ◦C the dielec-
tric constant nearly triples to a measured value of k = 3994.
Error bars are smaller than the line width.

resistor, taking one measurement per second using Lab-
View, as we slowly cooled the sample from 180 ◦C to
40 ◦C. We then determined the capacitance using:

Csample(T ) =
1

Rω

∣∣∣∣ VQ(T )

VIP (T )

∣∣∣∣− Cstray

We then determined the dielectric constant using the
sample dimensions, as shown in Fig. 6, and the inverse
capacitance, as shown in Fig. 7.

RESULTS

We observed a first order phase transition in the di-
electric constant of BaTiO3 at a temperature of 119.45±
0.55 ◦C. At this point we observed the dielectric constant
changed from roughly 1800 to 4000 in a discontinuous
transition. This result is in disagreement with mean field
theory and the theory of second order phase transitions,



4

40 60 80 100 120 140 160 180
Temperature ( C)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
In

ve
rs

e 
Ca

pa
cit

an
ce

 (1
/F

)
1e10 First Order Phase Transition in BaTiO3 at 119.4 C

Cooling Data
1.00 × 108(T 90.0)

FIG. 7. We observe a first order, discontinuous, phase transi-
tion at 119.45±0.55 ◦C, corresponding to the transition from
cubic (paraelectric) to tetragonal (ferroelectric). We estimate
that if mean field theory were valid and a second order tran-
sition occurred, it would occur at Tc = 89.96 ± 0.57 ◦C with
constant c = 1.0030 ± 0.0068 × 108 F K/m. We took a least
squares best fit for the 100 hottest data points, since these
were the most linear and least interrupted by the first order
transition. Error bars are smaller than the line width.

which using our data predict a divergence of the dielectric
constant at a critical temperature of 89.96 ± 0.57 ◦C.

Error Analysis

The determination of frequency ω and resistance R
were measured to five significant figures with only small
fluctuations around their values. Similarly, the voltages
VQ and VIP were determined to four significant figures
with only small fluctuations around their values. Mean-
while, Cstray was determined to four significant figures,
but may have fluctuated during the experiment due to
wire movements and environmental factors. The least ac-
curate measurements we took were of the area and mass

of the crystal which were measured to two significant fig-
ures. These less accurate values were limited by the opti-
cal resolution of a photo of the sample and the precision
of a scale measuring the crystal’s mass. The impact of
these rough values is to introduce some systematic error
into the determination of the dielectric constant: viz, the
entire graph is a linear scaling of the true graph.

Discussion

While mean field theory and second order phase tran-
sitions predict a divergence of the dielectric constant at
a critical temperature, no such divergence is observed:
see Fig. 7. Rather, a discontinuity in the dielectric con-
stant occurs, indicating a first order phase transition. We
believe that this phase transition is a transition from cu-
bic to tetragonal symmetry where inversion symmetry is
broken and a polarized domains appear.

CONCLUSIONS

BaTiO3 has a very large dielectric constant, and this
dielectric constant is dependent on temperature. In par-
ticular at around 119.45 ◦C the dielectric constant is dis-
continuous and undergoes a first order phase transition.
If we were to repeat the experiment, we would have taken
more accurate measurements of the crystal’s mass and
dimensions.
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