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USEFUL MATHEMATICS
You can cancel out any 0 and factor out
all constants. The trig function are:

sin(x) = O/H
=A/H
0/A
For all real z, 22 > 0, so we invent i
such that 2 = —1. The Gaussian is

1 (r—x0)2 2
P(z) = 27rAe( 0)°/24

Integrating in polar coordinates we find

oo
/ dr e = il
oo a

Differentiating under the integral sign

/Oo dx 1‘2”6_‘”2 = _—d ! T
oo da a

Integrating directly we find

> 1
/ dr e % = —
oo a

Integrating by parts is very useful

/abfg’dx - /abfdg - —/abgdf+fg|i

For example, it gives us the I' function

o0 !
T(n+1) = / dz e~ = -

cos(x)
tan(z) =

e antl
Decomposing into even/odd functions
z)+ f(—x x)— f(—x
f(@:f( ) 2f( ), (@) 2f( )

We then have [ dx odd(x) =0 and
/ dz even(z) = 2/ dx even(x)
—a 0

Completing the square can also help
322 — 122 = 3((z — 2)? — 4)
The chain rule is also essential
d
d—(m sin(z?)) = sin(z?) + 222 cos(z?)
x
The u-Substitution helps as well
4 16
/ dr 6xe™® = du 3e™"
1 1
We can do a u-substitution like
P,(u)du = P,(z)dx
n(u)du = n(E)d(F)
PuysicAL CONSTANTS
g. =1.602-1071° C
me = 9.109 - 1073 kg = 511 keV
kp =8.617-10"° eV/K
h=10.55-10"**J s

PHYSIcS 1 KNOWLEDGE

The units of your answer should be sen-
sible. Energy, momentum, and angular
momentum are conserved. We have

F =ma
The work is

W = / F.dl
The kinetic energy is

1 lp|?
K== 2=
vl = o
and the Hamiltonian is
H=K+U

For a spring-mass system

F=ktxr = w=+k/m=2nf

For relativistic motion we have

K = \/p2c® + mct — moc?
pc =/ E?2—mic* =/ K? + 2Kmgc?

The Lorentz force law is
F =¢(E+ v x B)
In a capacitor we have

|E|=V/d
For a wave we have
f=c/A

Waves can be added, leading to beats
1ptotal(ma t) = 1/11 (37, y) + ¢2 (.’L‘, t)

PROBABILITY DISTRIBUTIONS

The expectation value of A is
(A) = / dx P(z)A(z)

In radial coordinates this is

- /O " dr P(r)A()

The probability is normalized if

/P V)dv =1

Physically, (x) meaningless, but
P(z) = ¢*(z)y(z) = [¢(2)]? is mean-
ingful. In radial coordinates we have

P(r)/dr = |44, or P(r) = r|R(r) >
From this we insist that v be finite and

| w1
The “uncerggnty” in a quantity is
Ag = V{¢?) — (9)?
Uncertainty (Cauchy-Schwarz)
ApAzx > h/2
AEAt > h/2

OPERATORS
We have the operators

T =x=1ih—

dp

where & and p are canonical conjugates

R L0
p=p= —Zﬁ%
The Hamiltonian is
H=K~+U
Which is composed of kinetic energy
P ﬁ B2 92

- 2m 2m Ox?
and potential energy
U=U(x)
The energy generates time translation

0
= Zha

SCHRODINGER EQUATION

The Schrédinger equation is
Hy = By
With E = ihd, we have
o
Hy = ih— 5
For E,, an eigenvalue of H we have the
time-independent Schrodinger equation
(solutions have v, (t) =1, (0)e~Fnt/h)
h? 82wn(x)+

Solving we have (a=+/2m(U—E,)/h)
1%(96) = Ae " + Be®®

In terms of trig functions (k = i)
Yn(x) = C cos(kx) + D sin(kz)

This solution holds in regions where U
is constant. The boundaries conditions
are that ¢ and its first derivative are
continuous (except when U is infinite).
We can superimpose solutions

[1h1 + h2)? = (1 + ¥a) (Y1 + ¥a)*

which results in time-dependent beats.
INFINITE SQUARE WELL

We consider the potential

0 0Lx<L

U(z) = .
oo otherwise

For which the energy eigenvalues are

Which correspond to eigenfunctions

Yn(x) = \/2/Lsin(nma/L)
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HARMONIC OSCILLATOR
We consider the potential
1 1
U(z) = §kx2 = imwQ:EZ
For which the energy eigenvalues are
E,=(n+3)hw
with eigenfunctions (a = \/h/mw)
1
Tbn(l‘) _ e—x2/2a2Hn(£)
a

V2l wa?

Where the Hermite polynomials are
Hy(x) =1
Hy(z) =2z
Hy(x) = 42* — 2

n_z? d" —z2
Hy(w) = (1) 2 (o)
And the ground state wavefunction is
1 —22/9242
wo(f) = —F7—¢ &

Ta?

3D INFINITE SQUARE WELL

In 3D, 92, — V? so that the time-

independent Schrédinger equation is
h2

_%VQ"/Jn(T) + U("“Wn(?“) = Enwn(,r)

For a right parallelepiped we have

()2 2
L, Lo Ls

“om
The linear momentum of the states is

mh
‘pi| = nlfl

QUANTUM TUNNELING

ijk

Ce—ikz
De+ikr

Aefik‘w
B€+ikx < <

Reflection and transmission coefficients

|B|? C|?
R=+—5, = —
g TE e
Where there is no accumulation so
R+T=1

We can approximate the transmission
T(B) ~ e 2% [ 4z I@-E
Where we define the penetration depth

0 ="h/\/2m(U — E)
The energy levels of a finite well are
w22
2

E,~n"————
" om(L + 26)2

QUANTUM NUMBERS

Quantum numbers are for counting to
index eigenstates (usually nodes of the
wavefunction). In hydrogenic atoms
(and electronic orbitals in atoms)

e Principle, n =1,2,3, ...

e Angular momentum,!/=0,...,n—1

0 l=0%s,1p, 24d, 3 f

e Magnetic, m; = —1I,..., 1 — 1,1

e Spin, s=-5,-5+1,...,8
For electrons and nucleons S = 1/2.
Ex. The 4Fs e~ isn=4,1=3,j=2.

Pauli exclusion principle: No two
fermions may occupy an orbital with
the same n, [, m;, ms numbers.

ANGULAR MOMENTUM

Where the total angular momentum is
j=1l+s

Length of angular momentum vector

Il =i+ 1Dh

The total orbital angular momentum

|L| = /I(l+ 1)k
The angular momentum along 2 is
LZ = mlh

Which leads to “space quantization”
_ L,

IL|
The spherical wave functions can be
decomposed in the complete basis

wnlml (Ta 97 ¢) = Rnl (T)YVlml (97 ¢)

Hund’s rules for orbital occupation
1. Maximize the total spin
2. Maximize J
3. Maximize L

cos(6)

WAVE-PARTICLE DUALITY

Light has momentum

h
Dy = X
and energy
hc 1240 eV nm
E = h = ——
K / A A
Which motivates wave-particle duality

and the de Broglie wavelength
A= b he
p pc

OpPTICAL EVIDENCE FOR
QUANTIZATION

Wein Law approximation

0.002898
Amax = ——

Plank’s spectral radiance formula

u(r. 1) = S (R )

Energy quantization from a cavity

E =nhf =nhw

Photoelectric effect with workfunction
Kmax = hf — owr
ELECTRONIC EVIDENCE FOR
QUANTIZATION
Bragg law for constructive interference
n\ = 2dsin(0)

Compton scattering relation

h (1 —cos(6))

mecC

AN =

Thompson’s cathode ray experiment

v () ()

Millikan oil drop experiment
@ Uter + Uup
E Uter

ne =

HYDROGEN

Hydrogen has the Coulomb potential
and energy levels (k = 1/4me)

ke* 22 13677

E, = 5

v

2a9 n? n
which have negative energies and are

bound states. Real eigenfunctions can
always be found for bound states.

Stationary states of hydrogenic atoms
P(r,0,¢,t) = Ry (r)Y;™ (0, ¢)e™ ™"
where R,,;, and Y, are tabulated.

The “radius” of wavefunctions is
2

aopn
Ty =
A
where ag is the Bohr radius
h2
ag = m = 0.0529 nm
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QUANTUM COMBINATORICS

Quantum effects onset at high density
Ldm )\ /mkgT) ~

Then we sum rather than integrate

Eot = 21 ni E;
Where the number in in state ¢ is
ni(E;) = g(E;) f(E;)
g; is the density of states and f; is the
distribution function. In continuum
n(E)dE = g(E) faist(E)dE

DISTRIBUTION FUNCTIONS

Classical (distinguishable), ex. gasses
B; \—1
fus(Ei, T) = (ekBT)
Bosons (S integer, indistinguish-
able), ex. photons, phonons, gluons
BE; -1

fon(B:, T) = (e7a7 — 1)
Fermions (S = integer + %, indistin-
guishable), ex. electrons, neutrinos

BE; -1
fro(E;, T) = (ek? + 1)

MAXWELL-BOLTZMANN GAS

The speed distribution of a gas is
47N m
v (27rk:BT
We can then find the mean using
() = fOO:Odv vn(v)
Jo dv n(v)
or the root-mean-square (RMS) using

JoE Iy~ dv v2n(v)
Iy~ dv n(v)
or the extremal points using
d(n(v) _
dv

n(v)dv =

BLACKBODY RADIATION

The spectra radiance is given by
g(E)EdE
eFBT — 1
The total number with frequency is
87 f2df - 8re?dE

w(E)dE = En(E)dE =

N(f)df = =g, dE
(f) f C3 (hC)3 g’Y
So we have density of states
ST E?
g’Y(E) = (hc)3

2 _ ma?
v2e 28T dy

EINSTEIN HEAT CAPACITY

The specific heat capacity is defined by
_au
—dr

Where for classical materials have

U =3NakpT = 3RT

Which gives C = 3R, corresponding to
one R per degree of freedom. If instead
we model the energy in a solid as being
sequestered solely in phonons then

hw
<E> = T hw
eFsT — 1]
Or for a macroscopic sample of solid
U =3Ny(E)

Which gives us the specific heat

2 hw/kpT
c—3R (™ -
kpT ) (ehw/ksT —1)2
Where the Einstein temperature is
hw
Tp = —
E=

FREE ELECTRON GAS

For a free-electron gas we have
_ Ipl? _ RJK[?
= . = .
Which means that

1
1 2me 2 1
d|k|:2< = > E2dE
So the density of states is then

3
8v2mm2
g(B) = T

‘Which means the number at FE is
3 1
8v/2mm2 E3dE
h3 e(B—w)/kpT 4 1
So the chemical potential 7' = 0 is

2
h? 3N \?
0 = —
#o) 2me <871'V>
The Fermi velocity is given by
1
Qmev% = EF
And we have the Fermi temperature

E

2me

Nl=

n(E)dE =

And Fermi wavenumber

‘kpl =\ 2meEF/h
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