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Useful Mathematics

You can cancel out any 0 and factor out
all constants. The trig function are:

sin(x) = O/H

cos(x) = A/H

tan(x) = O/A

For all real x, x2 ≥ 0, so we invent i
such that i2 = −1. The Gaussian is

P (x) =
1√

2π∆
e−(x−x0)2/2∆2

Integrating in polar coordinates we find∫ ∞
−∞

dx e−ax
2

=

√
π

a

Differentiating under the integral sign∫ ∞
−∞

dx x2ne−ax
2

=

(
−d
da

)n√
π

a

Integrating directly we find∫ ∞
−∞

dx e−ax =
1

a

Integrating by parts is very useful∫ b

a

fg′dx =

∫ b

a

fdg = −
∫ b

a

gdf+fg
∣∣b
a

For example, it gives us the Γ function

Γ(n+ 1) =

∫ ∞
−∞

dx xne−ax =
n!

an+1

Decomposing into even/odd functions

f(x) =
f(x) + f(−x)

2
+
f(x)− f(−x)

2
We then have

∫ a
−a dx odd(x) = 0 and∫ a

−a
dx even(x) = 2

∫ a

0

dx even(x)

Completing the square can also help

3x2 − 12x = 3((x− 2)2 − 4)

The chain rule is also essential
d

dx
(x sin(x2)) = sin(x2) + 2x2 cos(x2)

The u-Substitution helps as well∫ 4

1

dx 6xe−x
2

=

∫ 16

1

du 3e−u

We can do a u-substitution like

Pu(u)du = Px(x)dx

n(u)du = n(E)d(E)

Physical Constants

qe = 1.602 · 10−19 C

me = 9.109 · 10−31 kg = 511 keV

kB = 8.617 · 10−5 eV/K

~ = 10.55 · 10−34 J s

Physics 1 Knowledge

The units of your answer should be sen-
sible. Energy, momentum, and angular
momentum are conserved. We have

F = ma
The work is

W =

∫
F · dl

The kinetic energy is

K =
1

2
m|v|2 =

|p|2

2m
and the Hamiltonian is

H = K + U

For a spring-mass system

F = kx =⇒ ω =
√
k/m = 2πf

For relativistic motion we have

K =
√
p2c2 +m2

0c
4 −m0c

2

pc =
√
E2−m2

0c
4 =

√
K2 + 2Km0c2

The Lorentz force law is

F = q(E + v ×B)

In a capacitor we have

|E| = V/d

For a wave we have
f = c/λ

Waves can be added, leading to beats

ψtotal(x, t) = ψ1(x, y) + ψ2(x, t)

Probability Distributions

The expectation value of A is

〈A〉 =

∫ ∞
−∞

dx P (x)A(x)

In radial coordinates this is

〈A〉 =

∫ ∞
0

dr P (r)A(r)

The probability is normalized if∫
V

P (V ) dV = 1

Physically, ψ(x) meaningless, but
P (x) = ψ∗(x)ψ(x) = |ψ(x)|2 is mean-
ingful. In radial coordinates we have
dP (r)/dr = |ψ|2A, or P (r) = r2|R(r)|2.
From this we insist that ψ be finite and∫ ∞

−∞
|ψ(x)|2dx = 1

The “uncertainty” in a quantity is

∆q ≡
√
〈q2〉 − 〈q〉2

Uncertainty (Cauchy-Schwarz)

∆p∆x ≥ ~/2
∆E∆t ≥ ~/2

Operators

We have the operators

x̂ = x = i~
∂

∂p

where x̂ and p̂ are canonical conjugates

p̂ = p = −i~ ∂

∂x
The Hamiltonian is

Ĥ = K̂ + Û

Which is composed of kinetic energy

K̂ =
p̂2

2m
= − ~2

2m

∂2

∂x2

and potential energy

Û = U(x)

The energy generates time translation

Ê = i~
∂

∂t

Schrödinger Equation

The Schrödinger equation is

Ĥψ = Êψ

With Ê = i~∂t we have

Ĥψ = i~
∂ψ

∂t

For En an eigenvalue of Ĥ we have the
time-independent Schrödinger equation
(solutions have ψn(t) =ψn(0)e−iEnt/~)

− ~2

2m

∂2ψn(x)

∂x2
+U(x)ψn(x) = Enψn(x)

Solving we have (α=
√

2m(U−En)/~)

ψn(x) = Ae−αx +Beαx

In terms of trig functions (k = iα)

ψn(x) = C cos(kx) +D sin(kx)

This solution holds in regions where U
is constant. The boundaries conditions
are that ψ and its first derivative are
continuous (except when U is infinite).
We can superimpose solutions

|ψ1 + ψ2|2 = (ψ1 + ψ2)(ψ1 + ψ2)∗

which results in time-dependent beats.

Infinite Square Well

We consider the potential

U(x) =

{
0 0 ≤ x ≤ L
∞ otherwise

For which the energy eigenvalues are

En = n2 π
2~2

2mL2

Which correspond to eigenfunctions

ψn(x) =
√

2/L sin(nπx/L)
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Harmonic Oscillator

We consider the potential

U(x) =
1

2
kx2 =

1

2
mω2x2

For which the energy eigenvalues are

En = (n+ 1
2 )~ω

with eigenfunctions (a =
√
~/mω)

ψn(x) =
1√

2nn!
√
πa2

e−x
2/2a2Hn(

x

a
)

Where the Hermite polynomials are

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

Hn(x) = (−1)nex
2 dn

dxn
(e−x

2

)

And the ground state wavefunction is

ψ0(x) =
1√√
πa2

e−x
2/2a2

3D Infinite Square Well

In 3D, ∂2
xx 7→ ∇2 so that the time-

independent Schrödinger equation is

− ~2

2m
∇2ψn(r) +U(r)ψn(r) = Enψn(r)

For a right parallelepiped we have

Eijk=
π2~2

2m

[(
ni
L1

)2
+

(
nj
L2

)2
+

(
nk
L3

)2]
The linear momentum of the states is

|pi| = ni
π~
Li

Quantum Tunneling

Ae−ikx

Be+ikx

Ce−ikx

De+ikx

Reflection and transmission coefficients

R ≡ |B|
2

|A|2
, T ≡ |C|

2

|A|2
Where there is no accumulation so

R+ T = 1

We can approximate the transmission

T (E) ≈ e−
2
√

2m
~

∫
dx
√
U(x)−E

Where we define the penetration depth

δ = ~/
√

2m(U − E)

The energy levels of a finite well are

En ≈ n2 π2~2

2m(L+ 2δ)2

Quantum Numbers

Quantum numbers are for counting to
index eigenstates (usually nodes of the
wavefunction). In hydrogenic atoms
(and electronic orbitals in atoms)

• Principle, n = 1, 2, 3, . . .
• Angular momentum,l=0, . . . , n−1

◦ l=0↔s, 1↔p, 2↔d, 3↔f
• Magnetic, ml = −l, . . . , l − 1, l
• Spin, s = −S,−S + 1, . . . , S

For electrons and nucleons S = 1/2.

Ex. The 4F 5
2
e− is n = 4, l = 3, j = 5

2 .

Pauli exclusion principle: No two
fermions may occupy an orbital with
the same n, l, ml, ms numbers.

Angular Momentum

Where the total angular momentum is

j = l + s

Length of angular momentum vector

|J | =
√
j(j + 1)~

The total orbital angular momentum

|L| =
√
l(l + 1)~

The angular momentum along ẑ is

Lz = ml~
Which leads to “space quantization”

cos(θ) =
L

Z

|L|
The spherical wave functions can be
decomposed in the complete basis

ψnlml
(r, θ, φ) = Rnl(r)Y

ml

l (θ, φ)

Hund’s rules for orbital occupation
1. Maximize the total spin
2. Maximize J
3. Maximize L

Wave-Particle Duality

Light has momentum

pγ =
h

λ
and energy

Eγ = hf =
hc

λ
=

1240 eV nm

λ

Which motivates wave-particle duality
and the de Broglie wavelength

λ =
h

p
=
hc

pc

Optical Evidence for
Quantization

Wein Law approximation

λmax =
0.002898

T

Plank’s spectral radiance formula

u(f, T ) =
8πhf3

c3

(
e

hf
kBT − 1

)−1

Energy quantization from a cavity

E = nhf = n~ω

Photoelectric effect with workfunction

Kmax = hf − φWF

Electronic Evidence for
Quantization

Bragg law for constructive interference

nλ = 2d sin(θ)

Compton scattering relation

∆λ =
h

mec
(1− cos(θ))

Thompson’s cathode ray experiment

e

me
= θ

(
V

d

)(
1

B2l

)
Millikan oil drop experiment

ne =
mg

E

(vter + vup

vter

)
Hydrogen

Hydrogen has the Coulomb potential
and energy levels (k = 1/4πε0)

En = −ke
2

2a0

Z2

n2
= −13.6Z2

n2
eV

which have negative energies and are
bound states. Real eigenfunctions can
always be found for bound states.

Stationary states of hydrogenic atoms

ψ(r, θ, φ, t) = Rnl(r)Y
ml

l (θ, φ)e−iωt

where Rnl, and Y ml

l are tabulated.

The “radius” of wavefunctions is

rn =
a0n

2

Z

where a0 is the Bohr radius

a0 =
~2

meke2
= 0.0529 nm
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Quantum Combinatorics

Quantum effects onset at high density(
N

Ldim

)(
~/2√
mkBT

)dim

≈ 1

Then we sum rather than integrate

Etot =
∑

i
niEi

Where the number in in state i is

ni(Ei) = g(Ei)f(Ei)

gi is the density of states and fi is the
distribution function. In continuum

n(E)dE = g(E)fdist(E)dE

Distribution Functions

Classical (distinguishable), ex. gasses

fMB(Ei, T ) =
(
e

Ei
kBT

)−1

Bosons (S = integer, indistinguish-
able), ex. photons, phonons, gluons

fBE(Ei, T ) =
(
e

Ei
kBT − 1

)−1

Fermions (S = integer + 1
2 , indistin-

guishable), ex. electrons, neutrinos

fFD(Ei, T ) =
(
e

Ei
kBT + 1

)−1

Maxwell-Boltzmann Gas

The speed distribution of a gas is

n(v)dv =
4πN

V

(
m

2πkBT

) 3
2

v2e
− mv2

2kBT dv

We can then find the mean using

〈v〉 =

∫∞
0
dv vn(v)∫∞

0
dv n(v)

or the root-mean-square (RMS) using

√
v2 =

√∫∞
0
dv v2n(v)∫∞

0
dv n(v)

or the extremal points using
d(n(v))

dv
= 0

Blackbody Radiation

The spectra radiance is given by

u(E)dE = E n(E)dE =
gγ(E)EdE

e
E

kBT − 1
The total number with frequency is

N(f)df =
8πf2df

c3
=

8πe2dE

(hc)3
= gγdE

So we have density of states

gγ(E) =
8πE2

(hc)3

Einstein Heat Capacity

The specific heat capacity is defined by

C ≡ dU

dT
Where for classical materials have

U = 3NAkBT = 3RT

Which gives C = 3R, corresponding to
one R per degree of freedom. If instead
we model the energy in a solid as being
sequestered solely in phonons then

〈E〉 =
~ω

e
~ω

kBT − 1

Or for a macroscopic sample of solid

U = 3NA〈E〉
Which gives us the specific heat

C = 3R

(
~ω
kBT

)2
e~ω/kBT

(e~ω/kBT − 1)2

Where the Einstein temperature is

TE =
~ω
kB

Free Electron Gas

For a free-electron gas we have

E =
|p|2

2me
=

~2|k|2

2me

Which means that

d|k| = 1

2

(
2me

~2

) 1
2

E−
1
2 dE

So the density of states is then

g(E) =
8
√

2πm
3
2
e

h3
E

1
2

Which means the number at E is

n(E)dE =
8
√

2πm
3
2
e

h3

E
1
2 dE

e(E−µ)/kBT + 1

So the chemical potential T = 0 is

EF = µ(0) =
h2

2me

(
3N

8πV

) 2
3

The Fermi velocity is given by

1

2
mev

2
F = EF

And we have the Fermi temperature

TF ≡
EF
kB

And Fermi wavenumber

|kF | =
√

2meEF /~

intentionally left blank
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