Physics 17 at UCLA \diamond Formula Sheet (1 of 3)

Useful Mathematics

You can cancel out any 0 and factor out all constants. The trig function are:

$$
\begin{aligned}
& \sin (x)=O / H \\
& \cos (x)=A / H \\
& \tan (x)=O / A
\end{aligned}
$$

For all real $x, x^{2} \geq 0$, so we invent i such that $i^{2}=-1$. The Gaussian is

$$
P(x)=\frac{1}{\sqrt{2 \pi} \Delta} e^{-\left(x-x_{0}\right)^{2} / 2 \Delta^{2}}
$$

Integrating in polar coordinates we find

$$
\int_{-\infty}^{\infty} d x e^{-a x^{2}}=\sqrt{\frac{\pi}{a}}
$$

Differentiating under the integral sign

$$
\int_{-\infty}^{\infty} d x x^{2 n} e^{-a x^{2}}=\left(\frac{-d}{d a}\right)^{n} \sqrt{\frac{\pi}{a}}
$$

Integrating directly we find

$$
\int_{-\infty}^{\infty} d x e^{-a x}=\frac{1}{a}
$$

Integrating by parts is very useful
$\int_{a}^{b} f g^{\prime} d x=\int_{a}^{b} f d g=-\int_{a}^{b} g d f+\left.f g\right|_{a} ^{b}$ For example, it gives us the Γ function

$$
\Gamma(n+1)=\int_{-\infty}^{\infty} d x x^{n} e^{-a x}=\frac{n!}{a^{n+1}}
$$

Decomposing into even/odd functions
$f(x)=\frac{f(x)+f(-x)}{2}+\frac{f(x)-f(-x)}{2}$
We then have $\int_{-a}^{a} d x \operatorname{odd}(x)=0$ and

$$
\int_{-a}^{a} d x \operatorname{even}(x)=2 \int_{0}^{a} d x \operatorname{even}(x)
$$

Completing the square can also help

$$
3 x^{2}-12 x=3\left((x-2)^{2}-4\right)
$$

The chain rule is also essential

$$
\frac{d}{d x}\left(x \sin \left(x^{2}\right)\right)=\sin \left(x^{2}\right)+2 x^{2} \cos \left(x^{2}\right)
$$

The u-Substitution helps as well

$$
\int_{1}^{4} d x 6 x e^{-x^{2}}=\int_{1}^{16} d u 3 e^{-u}
$$

We can do a u-substitution like

$$
\begin{aligned}
& P_{u}(u) d u=P_{x}(x) d x \\
& n(u) d u=n(E) d(E)
\end{aligned}
$$

Physical Constants

$$
\begin{gathered}
q_{e}=1.602 \cdot 10^{-19} \mathrm{C} \\
m_{e}=9.109 \cdot 10^{-31} \mathrm{~kg}=511 \mathrm{keV} \\
k_{B}=8.617 \cdot 10^{-5} \mathrm{eV} / \mathrm{K} \\
\hbar=10.55 \cdot 10^{-34} \mathrm{~J} \mathrm{~s}
\end{gathered}
$$

Physics 1 Knowledge

The units of your answer should be sensible. Energy, momentum, and angular momentum are conserved. We have

The work is

$$
\boldsymbol{F}=m \boldsymbol{a}
$$

$$
W=\int \boldsymbol{F} \cdot d \boldsymbol{l}
$$

The kinetic energy is

$$
K=\frac{1}{2} m|\boldsymbol{v}|^{2}=\frac{|\boldsymbol{p}|^{2}}{2 m}
$$

and the Hamiltonian is

$$
H=K+U
$$

For a spring-mass system

$$
\boldsymbol{F}=k \boldsymbol{x} \Longrightarrow \omega=\sqrt{k / m}=2 \pi f
$$

For relativistic motion we have

$$
\begin{gathered}
K=\sqrt{p^{2} c^{2}+m_{0}^{2} c^{4}}-m_{0} c^{2} \\
p c=\sqrt{E^{2}-m_{0}^{2} c^{4}}=\sqrt{K^{2}+2 K m_{0} c^{2}}
\end{gathered}
$$

The Lorentz force law is

$$
\boldsymbol{F}=q(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B})
$$

In a capacitor we have

$$
|\boldsymbol{E}|=V / d
$$

For a wave we have

$$
f=c / \lambda
$$

Waves can be added, leading to beats

$$
\psi_{\text {total }}(x, t)=\psi_{1}(x, y)+\psi_{2}(x, t)
$$

Probability Distributions

The expectation value of A is

$$
\langle A\rangle=\int_{-\infty}^{\infty} d x P(x) A(x)
$$

In radial coordinates this is

$$
\langle A\rangle=\int_{0}^{\infty} d r P(r) A(r)
$$

The probability is normalized if

$$
\int_{V} P(V) d V=1
$$

Physically, $\psi(x)$ meaningless, but $P(x)=\psi^{*}(x) \psi(x)=|\psi(x)|^{2}$ is meaningful. In radial coordinates we have $d P(r) / d r=|\psi|^{2} A$, or $P(r)=r^{2}|R(r)|^{2}$. From this we insist that ψ be finite and

$$
\int_{-\infty}^{\infty}|\psi(x)|^{2} d x=1
$$

The "uncertainty" in a quantity is

$$
\Delta q \equiv \sqrt{\left\langle q^{2}\right\rangle-\langle q\rangle^{2}}
$$

Uncertainty (Cauchy-Schwarz)

$$
\begin{aligned}
& \Delta p \Delta x \geq \hbar / 2 \\
& \Delta E \Delta t \geq \hbar / 2
\end{aligned}
$$

Operators

We have the operators

$$
\hat{x}=x=i \hbar \frac{\partial}{\partial p}
$$

where \hat{x} and \hat{p} are canonical conjugates

$$
\hat{p}=p=-i \hbar \frac{\partial}{\partial x}
$$

The Hamiltonian is

$$
\hat{H}=\hat{K}+\hat{U}
$$

Which is composed of kinetic energy

$$
\hat{K}=\frac{\hat{p}^{2}}{2 m}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}
$$

and potential energy

$$
\hat{U}=U(x)
$$

The energy generates time translation

$$
\hat{E}=i \hbar \frac{\partial}{\partial t}
$$

Schrödinger Equation

The Schrödinger equation is

$$
\hat{H} \psi=\hat{E} \psi
$$

With $\hat{E}=i \hbar \partial_{t}$ we have

$$
\hat{H} \psi=i \hbar \frac{\partial \psi}{\partial t}
$$

For E_{n} an eigenvalue of \hat{H} we have the time-independent Schrödinger equation (solutions have $\left.\psi_{n}(t)=\psi_{n}(0) e^{-i E_{n} t / \hbar}\right)$ $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{n}(x)}{\partial x^{2}}+U(x) \psi_{n}(x)=E_{n} \psi_{n}(x)$ Solving we have $\left(\alpha=\sqrt{2 m\left(U-E_{n}\right) / \hbar}\right)$

$$
\psi_{n}(x)=A e^{-\alpha x}+B e^{\alpha x}
$$

In terms of trig functions ($k=i \alpha$)

$$
\psi_{n}(x)=C \cos (k x)+D \sin (k x)
$$

This solution holds in regions where U is constant. The boundaries conditions are that ψ and its first derivative are continuous (except when U is infinite). We can superimpose solutions

$$
\left|\psi_{1}+\psi_{2}\right|^{2}=\left(\psi_{1}+\psi_{2}\right)\left(\psi_{1}+\psi_{2}\right)^{*}
$$ which results in time-dependent beats.

Infinite Square Well

We consider the potential

$$
U(x)= \begin{cases}0 & 0 \leq x \leq L \\ \infty & \text { otherwise }\end{cases}
$$

For which the energy eigenvalues are

$$
E_{n}=n^{2} \frac{\pi^{2} \hbar^{2}}{2 m L^{2}}
$$

Which correspond to eigenfunctions

$$
\psi_{n}(x)=\sqrt{2 / L} \sin (n \pi x / L)
$$

Physics 17 at UCLA \diamond Formula Sheet (2 of 3)

Harmonic Oscillator

We consider the potential

$$
U(x)=\frac{1}{2} k x^{2}=\frac{1}{2} m \omega^{2} x^{2}
$$

For which the energy eigenvalues are

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega
$$

with eigenfunctions $(a=\sqrt{\hbar / m \omega})$

$$
\psi_{n}(x)=\frac{1}{\sqrt{2^{n} n!\sqrt{\pi a^{2}}}} e^{-x^{2} / 2 a^{2}} H_{n}\left(\frac{x}{a}\right)
$$

Where the Hermite polynomials are

$$
\begin{gathered}
H_{0}(x)=1 \\
H_{1}(x)=2 x \\
H_{2}(x)=4 x^{2}-2 \\
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right)
\end{gathered}
$$

And the ground state wavefunction is

$$
\psi_{0}(x)=\frac{1}{\sqrt{\sqrt{\pi a^{2}}}} e^{-x^{2} / 2 a^{2}}
$$

3D Infinite Square Well

In 3D, $\partial_{x x}^{2} \mapsto \nabla^{2}$ so that the timeindependent Schrödinger equation is
$-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi_{n}(\boldsymbol{r})+U(\boldsymbol{r}) \psi_{n}(\boldsymbol{r})=E_{n} \psi_{n}(\boldsymbol{r})$
For a right parallelepiped we have
$E_{i j k}=\frac{\pi^{2} \hbar^{2}}{2 m}\left[\left(\frac{n_{i}}{L_{1}}\right)^{2}+\left(\frac{n_{j}}{L_{2}}\right)^{2}+\left(\frac{n_{k}}{L_{3}}\right)^{2}\right]$
The linear momentum of the states is

$$
\left|p_{i}\right|=n_{i} \frac{\pi \hbar}{L_{i}}
$$

Quantum Tunneling

Reflection and transmission coefficients

$$
\mathcal{R} \equiv \frac{|B|^{2}}{|A|^{2}}, \quad \mathcal{T} \equiv \frac{|C|^{2}}{|A|^{2}}
$$

Where there is no accumulation so

$$
\mathcal{R}+\mathcal{T}=1
$$

We can approximate the transmission

$$
\mathcal{T}(E) \approx e^{-\frac{2 \sqrt{2 m}}{\hbar}} \int d x \sqrt{U(x)-E}
$$

Where we define the penetration depth

$$
\delta=\hbar / \sqrt{2 m(U-E)}
$$

The energy levels of a finite well are

$$
E_{n} \approx n^{2} \frac{\pi^{2} \hbar^{2}}{2 m(L+2 \delta)^{2}}
$$

Quantum Numbers

Quantum numbers are for counting to index eigenstates (usually nodes of the wavefunction). In hydrogenic atoms (and electronic orbitals in atoms)

- Principle, $n=1,2,3, \ldots$
- Angular momentum, $l=0, \ldots, n-1$
- $l=0 \leftrightarrow s, 1 \leftrightarrow p, 2 \leftrightarrow d, 3 \leftrightarrow f$
- Magnetic, $m_{l}=-l, \ldots, l-1, l$
- Spin, $s=-S,-S+1, \ldots, S$

For electrons and nucleons $S=1 / 2$.
Ex. The $4 F_{\frac{5}{2}} e^{-}$is $n=4, l=3, j=\frac{5}{2}$.
Pauli exclusion principle: No two fermions may occupy an orbital with the same n, l, m_{l}, m_{s} numbers.

Angular Momentum

Where the total angular momentum is

$$
j=l+s
$$

Length of angular momentum vector

$$
|\boldsymbol{J}|=\sqrt{j(j+1)} \hbar
$$

The total orbital angular momentum

$$
|\boldsymbol{L}|=\sqrt{l(l+1)} \hbar
$$

The angular momentum along $\hat{\boldsymbol{z}}$ is

$$
L_{z}=m_{l} \hbar
$$

Which leads to "space quantization"

$$
\cos (\theta)=\frac{L_{Z}}{|\boldsymbol{L}|}
$$

The spherical wave functions can be decomposed in the complete basis

$$
\psi_{n l m_{l}}(r, \theta, \phi)=R_{n l}(r) Y_{l}^{m_{l}}(\theta, \phi)
$$

Hund's rules for orbital occupation

1. Maximize the total spin
2. Maximize \boldsymbol{J}
3. Maximize \boldsymbol{L}

Wave-Particle Duality

Light has momentum

$$
p_{\gamma}=\frac{h}{\lambda}
$$

and energy

$$
E_{\gamma}=h f=\frac{h c}{\lambda}=\frac{1240 \mathrm{eV} \mathrm{~nm}}{\lambda}
$$

Which motivates wave-particle duality and the de Broglie wavelength

$$
\lambda=\frac{h}{p}=\frac{h c}{p c}
$$

Optical Evidence for QuANTIZATION

Wein Law approximation

$$
\lambda_{\max }=\frac{0.002898}{T}
$$

Plank's spectral radiance formula

$$
u(f, T)=\frac{8 \pi h f^{3}}{c^{3}}\left(e^{\frac{h f}{k_{B} T}}-1\right)^{-1}
$$

Energy quantization from a cavity

$$
E=n h f=n \hbar \omega
$$

Photoelectric effect with workfunction

$$
K_{\max }=h f-\phi_{\mathrm{WF}}
$$

Electronic Evidence for QUANTIZATION

Bragg law for constructive interference

$$
n \lambda=2 d \sin (\theta)
$$

Compton scattering relation

$$
\Delta \lambda=\frac{h}{m_{e} c}(1-\cos (\theta))
$$

Thompson's cathode ray experiment

$$
\frac{e}{m_{e}}=\theta\left(\frac{V}{d}\right)\left(\frac{1}{B^{2} l}\right)
$$

Millikan oil drop experiment

$$
n e=\frac{m g}{E}\left(\frac{v_{\mathrm{ter}}+v_{\mathrm{up}}}{v_{\mathrm{ter}}}\right)
$$

Hydrogen

Hydrogen has the Coulomb potential and energy levels ($k=1 / 4 \pi \epsilon_{0}$)

$$
E_{n}=-\frac{k e^{2}}{2 a_{0}} \frac{Z^{2}}{n^{2}}=-\frac{13.6 Z^{2}}{n^{2}} \mathrm{eV}
$$

which have negative energies and are bound states. Real eigenfunctions can always be found for bound states.

Stationary states of hydrogenic atoms

$$
\psi(r, \theta, \phi, t)=R_{n l}(r) Y_{l}^{m_{l}}(\theta, \phi) e^{-i \omega t}
$$

where $R_{n l}$, and $Y_{l}^{m_{l}}$ are tabulated.
The "radius" of wavefunctions is

$$
r_{n}=\frac{a_{0} n^{2}}{Z}
$$

where a_{0} is the Bohr radius

$$
a_{0}=\frac{\hbar^{2}}{m_{e} k e^{2}}=0.0529 \mathrm{~nm}
$$

Physics 17 at UCLA \diamond Formula Sheet (3 of 3)

Quantum Combinatorics

Quantum effects onset at high density

$$
\left(\frac{N}{L^{\operatorname{dim}}}\right)\left(\frac{\hbar / 2}{\sqrt{m k_{B} T}}\right)^{\operatorname{dim}} \approx 1
$$

Then we sum rather than integrate

$$
E_{\mathrm{tot}}=\sum_{i} n_{i} E_{i}
$$

Where the number in in state i is

$$
n_{i}\left(E_{i}\right)=g\left(E_{i}\right) f\left(E_{i}\right)
$$

g_{i} is the density of states and f_{i} is the distribution function. In continuum

$$
n(E) d E=g(E) f_{\mathrm{dist}}(E) d E
$$

Distribution Functions

Classical (distinguishable), ex. gasses

$$
f_{\mathrm{MB}}\left(E_{i}, T\right)=\left(e^{\frac{E_{i}}{k_{B} T}}\right)^{-1}
$$

Bosons ($S=$ integer, indistinguishable), ex. photons, phonons, gluons

$$
f_{\mathrm{BE}}\left(E_{i}, T\right)=\left(e^{\frac{E_{i}}{k_{B} T}}-1\right)^{-1}
$$

Fermions ($S=$ integer $+\frac{1}{2}$, indistinguishable), ex. electrons, neutrinos

$$
f_{\mathrm{FD}}\left(E_{i}, T\right)=\left(e^{\frac{E_{i}}{k_{B} T}}+1\right)^{-1}
$$

Maxwell-Boltzmann Gas

The speed distribution of a gas is
$n(v) d v=\frac{4 \pi N}{V}\left(\frac{m}{2 \pi k_{B} T}\right)^{\frac{3}{2}} v^{2} e^{-\frac{m v^{2}}{2 k_{B} T}} d v$
We can then find the mean using

$$
\langle v\rangle=\frac{\int_{0}^{\infty} d v v n(v)}{\int_{0}^{\infty} d v n(v)}
$$

or the root-mean-square (RMS) using

$$
\sqrt{v^{2}}=\sqrt{\frac{\int_{0}^{\infty} d v v^{2} n(v)}{\int_{0}^{\infty} d v n(v)}}
$$

or the extremal points using

$$
\frac{d(n(v))}{d v}=0
$$

Blackbody Radiation

The spectra radiance is given by

$$
u(E) d E=E n(E) d E=\frac{g_{\gamma}(E) E d E}{e^{\frac{E}{k_{B} T}}-1}
$$

The total number with frequency is
$N(f) d f=\frac{8 \pi f^{2} d f}{c^{3}}=\frac{8 \pi e^{2} d E}{(h c)^{3}}=g_{\gamma} d E$
So we have density of states

$$
g_{\gamma}(E)=\frac{8 \pi E^{2}}{(h c)^{3}}
$$

Einstein Heat Capacity

The specific heat capacity is defined by

$$
C \equiv \frac{d U}{d T}
$$

Where for classical materials have

$$
U=3 N_{A} k_{B} T=3 R T
$$

Which gives $C=3 R$, corresponding to one R per degree of freedom. If instead we model the energy in a solid as being sequestered solely in phonons then

$$
\langle E\rangle=\frac{\hbar \omega}{e^{\frac{\hbar \omega}{k_{B} T}}-1}
$$

Or for a macroscopic sample of solid

$$
U=3 N_{A}\langle E\rangle
$$

Which gives us the specific heat

$$
C=3 R\left(\frac{\hbar \omega}{k_{B} T}\right)^{2} \frac{e^{\hbar \omega / k_{B} T}}{\left(e^{\hbar \omega / k_{B} T}-1\right)^{2}}
$$

Where the Einstein temperature is

$$
T_{E}=\frac{\hbar \omega}{k_{B}}
$$

Free Electron Gas

INTENTIONALLY LEFT BLANK
For a free-electron gas we have

$$
E=\frac{|\boldsymbol{p}|^{2}}{2 m_{e}}=\frac{\hbar^{2}|\boldsymbol{k}|^{2}}{2 m_{e}}
$$

Which means that

$$
d|\boldsymbol{k}|=\frac{1}{2}\left(\frac{2 m_{e}}{\hbar^{2}}\right)^{\frac{1}{2}} E^{-\frac{1}{2}} d E
$$

So the density of states is then

$$
g(E)=\frac{8 \sqrt{2} \pi m_{e}^{\frac{3}{2}}}{h^{3}} E^{\frac{1}{2}}
$$

Which means the number at E is

$$
n(E) d E=\frac{8 \sqrt{2} \pi m_{e}^{\frac{3}{2}}}{h^{3}} \frac{E^{\frac{1}{2}} d E}{e^{(E-\mu) / k_{B} T}+1}
$$

So the chemical potential $T=0$ is

$$
E_{F}=\mu(0)=\frac{h^{2}}{2 m_{e}}\left(\frac{3 N}{8 \pi V}\right)^{\frac{2}{3}}
$$

The Fermi velocity is given by

$$
\frac{1}{2} m_{e} v_{F}^{2}=E_{F}
$$

And we have the Fermi temperature

$$
T_{F} \equiv \frac{E_{F}}{k_{B}}
$$

And Fermi wavenumber

$$
\left|\boldsymbol{k}_{F}\right|=\sqrt{2 m_{e} E_{F}} / \hbar
$$

