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The fraction of excited electrons is
n exp(−Eg/kBT ), and at 300 K, kBT =
0.0259 eV, and from these carriers, the
resistivity is ρ = m∗/ne2τ .

Effective mass;E=p2/2m=~2k2/2m0:

~
dk

dt
=−eE, F =ma =⇒ 1

m∗
=

1

~2
d2E

dk2

Effective masses, are usually related as:
m∗e < m∗h < me

Conductivity is the sum of e− and h+:

σ =
ne2τe
me

+
pe2τh
mh

Density of states is D = dN/dk·dk/dE:

N1=2k

(
L

2π

)1
; N2=πk

2

(
L

2π

)2
; N3=

4πk3
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(
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The density of conduction electrons:

n =

∫ ∞
Eg

dE fn(E)Dn(E)

= 2

(
mekBT

2π~2

)3/2
e(µ−Eg)/kBT

The chemical potential for undoped:

µ =
Eg
2

+
3kBT

4
ln

(
mh

me

)
Use hydrogenic model for doped:

E=− e
2

a0
=⇒ E=− e2

εr0
for r0 =

meεa0
m∗

At low temperatures, kBT << Eg, for
n0 the coefficient before above in n:

n = (n0Nd)
1/2 exp(−Ed/2kBT )

p = (n0Na)1/2 exp(−Ea/2kBT )

Law of mass action forces equilibrium:

np=4

(
kBT

2π~2

)3
(memh)3/2e−Eg/kBT

At pn-junctions, chemical potentials
must match, and charge polarizes:
electrons sink and holes float. Observe:

Fermi Surfaces

To find the BZ of a given lattice:
• Use ai · bj = 2πδij to find bj
• Use the Wigner-Seitz Method

Then draw the empty lattice FS:

1 e− kF =
√

2/π · π/a ≈ 0.798 · π/a
2 e− kF =

√
4/π · π/a ≈ 1.128 · π/a

3 e− kF =
√

6/π · π/a ≈ 1.382 · π/a
Fold up BZs and select a zone scheme.
At each BZ edge, the FS deflects so
that FS⊥BZ, and a slight gap forms.

Number of electrons in a square lattice:

N = 1, 2, 3, · · · = V · spins

Vsite
=
πk2F · 2(

2π
L

)2
An example of a Fermi Surface:

Hexagonal and rectangular BZ in 2D:

The De Haas–van Alphen Effect for
the experimental determination of FS:
magnetization, M = ∂BF , is ∆(1/B)
periodic where ∆ = 2πe/~A for cross
sectional area A. Possibly ∆1, ∆2, . . .

In a magnetic field, motion is circular:

~
dk

dt
= ev×B =⇒ ω = ωc =

eB

m∗
Free electrons in B-fields form Landau
levels, of En = (n + 1

2 )~ωc, levels ex-
pand with increases in B, with degen-
eracy D = eL2B/2π~, and total energy
E = D~ωcs2/2 + (s− 1

2 )(N − sD)~ωc.

Quantum Hall Effect

Multiple ways to find the carrier con-
centration, including with oscillations:

∆

(
1

B

)
=

2πe

~A
; n=

2A

(2π)2
⇒ n=

2e

h∆(1/B)

With an expression for Hall Resistance:

Rxy =
B

ne
=⇒ n =

B

Rxye

Equating Fermi to Landau, EF to En:

EF =
n~2π
m∗

=⇒ n =
eB

2π~

(
L− 1

2

)
The Hall Resistance is quantized:

Rxy =
h

e2i
≈ 25.8

i
kΩ

Superconductivity I

SC is an electric effect where ρ = 0 for
a phase bounded by Tc and field Hc.

Meissner effect of perfect diamagnetism:

B=Happ+µ0M = 0 =⇒M=−H/µ0

London equation for penetration depth:

∇2B =
B

λ2c
; λc=

√
m

ne2µ0
∼ 102−103 Å

Gibbs energy, F =U−TS=−kBT ln(Z):

FN (0, T )− FS(0, T ) =
H2
c (T )

2µ0
Heat capacity is discontinuous at Tc:

(CS−CN )
∣∣
T=Tc

=
Tc
µ0

(
dHc(T )

dT

)2

T=Tc

The intrinsic coherence length of ψ:
ξ0 = 2~vF/πEg

In impure SC, for mean free path `:

ξ ≈
√
ξ0`; λ ≈ λc

√
ξ0/`

Critical fields may be estimated as:

Hc1 ≈ Φ0/πλ
2; Hc2 ≈ Φ0/πξ

2

Natural Constants

α = 137.035999−1

a0 = 5.29177211× 10−11 m

c = 2.99792458× 108 m/s

4πε0 = 1.11265006× 10−10 C/(V ·m)

e = 1.60217662× 10−19 C

h = 6.62607004× 10−34 J · s
~ = 1.05457180× 10−34 J · s
kB = 1.38064852× 10−23 J/K

me = 9.10938356× 10−31 kg

NA = 6.02214086× 1023
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Superconductivity II

BCS theory: electron phonon pairing
creates bosons that all condense to the
same energy state. This state is pro-
tected by an energy gap and particles
cannot individually gain or lose energy.

e− bound by energy ∆ for attraction
U , which is an energy gap of εF ±∆:

∆ ≈ −2~ω exp(−2/UD(εF)) ∼ 1 meV

BCS theory predicts an energy gap of:
Eg = 2∆ = 3.5kBTc

Macroscopic quantum wave function:

ψ =
√
n eiθ

Electron tunneling between SC gives
DC Josephson effect current,δ=θ2−θ1:

J = J0 sin(δ)

AC effect ω=2eV/~ ∼ 500 MHz/µV:
J = J0 sin(δ − ωt)

In SC rings there is flux quantization:

Φ0 = 2π~/q = h/2e

SQUID behaves like Aharonov-Bohm:

J=2J0 sin(δ) cos(eΦ/~); Φ=area · ||B||

Dia- and Paramagnetism

Magnetic susceptibility is χ ≡ µ0M/H.
χ<0→ dia, and χ>0→ paramagnet.
SC are perfect diamagnets with χ=−1.
The typical values are χ ∼ 10−3−10−4.

Diamagnetism arises in inert gasses,
and is captured by Larmor precession:

χ =
µ0(Nµ)

B
= −Ze

2µ0

6m
N〈r2〉

Atoms with unpaired electrons, atomic
Oxygen, and metals are paramagnetic.
The energy is for µB = e~/2m:

E = −µ ·B = gµB J ·B
In two state systems with x≡µB/kBT :

M=
∑

Niµi=Nµ
ex−e−x

ex+e−x
=Nµ tanh(x)

Curie-Brillouin law for 2J + 1 levels,
x≡gJµB/kBT , for high temperatures:

M = NgJµBBJ(x) ∝ T−1

In terms of effective Bohr magnetons:

M =
N

V

p2µ2
B

3kB

(
H

T

)
; p = g(J(J+1))1/2

Where the Landau g-factor is given as:

g = 1+
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)

Constant Pauli magnetism of metals is:

M=D(εF)µ2
BB=3Nµ2/2εF for low T

Electronic State Symbols

Hund’s Rules empirically usually work:
• Total spin Sz is maximized
• Orbital momentum, Lz is too
• Total orbital angular momentum:

? J= |L−S| less than half full
? J=|L+S| more than half full

Symbols are written as 2S+1LJ , where:
L = S P D F G H I J

l l l l l l l l
L = 0 1 2 3 4 5 6 7

(Anti)-Ferromagnetism

Curie-Weiss Law around paramagnetic-
ferromagnetic transition temperature:

χ = C/(T − Tc)
Exchange interactions (d-orbital) make
spins align, as in the Heisenberg model:
Eex = −2JSi · Sj ; with J ∼ 10 meV
J <0→ anti, and J >0→ ferromagnet.

The Hamiltonian for this system is:

H = − 1
2

∑
ij

(
Jσiσj

)
+ gµBB

∑
j
σj

Approximated using mean field theory:
• Solve exactly for a small region
• Approximate the outside in mean
• Make the solution self-consistent

Withm = M/Nµ, and t = kBT/Nµ
2λ,

next solve the transcendental equation:

m=tanh(m/t)⇒solns if t<1 i.e. T<Tc

Taylor Expansion to find susceptibility:

χ ∼

{
(Tc − T )1/2 T < Tc

1/(T − Tc) Tc < T

Spins in ferromagnets may behave like
phonons, where i = p, and j = p + 1.
For small oscillations, Sz ≈ S, so with
the equation of motion dJ/dt=µp×Bp:

Sx/yp = a exp(i(pka− ωt))
Where ω=4Js/~ ·(1−cos(ka)), which is
for long wavelengths, ~ω = (2JSa2)k2.

For anti-ferromagnets, Tc → TN = µC,
where it has been found that in TN<T :

χ = 2C/(T + TN)

Break AFM into two sublattices, and
magnonssolvedwithdeterminantaleqn.

M = (C/µB)(H/(T + TN))

Magnetic domain walls have exchange
energy density σex = JS2(π/Na)2 ·N ,
anisotropy energy σan = KNa, so by
infimizing energy,N=(π2JS2/Ka3)1/2,
so, per wall area σw=2π(KJS2/a)1/2.
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