Physics 140B at UCLA \diamond Formula Sheet (1 of 2)

SEMICONDUCTORS

The fraction of excited electrons is $n \exp \left(-E_{g} / k_{\mathrm{B}} T\right)$, and at $300 \mathrm{~K}, k_{\mathrm{B}} T=$ 0.0259 eV , and from these carriers, the resistivity is $\rho=m^{*} / n e^{2} \tau$.

Effective mass; $E=p^{2} / 2 m=\hbar^{2} k^{2} / 2 m_{0}$: $\hbar \frac{d k}{d t}=-e E, F=m a \Longrightarrow \frac{1}{m^{*}}=\frac{1}{\hbar^{2}} \frac{d^{2} E}{d k^{2}}$ Effective masses, are usually related as:

$$
m_{e}^{*}<m_{h}^{*}<m_{e}
$$

Conductivity is the sum of e^{-}and h^{+}:

$$
\sigma=\frac{n e^{2} \tau_{e}}{m_{e}}+\frac{p e^{2} \tau_{h}}{m_{h}}
$$

Density of states is $D=d N / d k \cdot d k / d E$: $N_{1}=2 k\left(\frac{L}{2 \pi}\right)^{1} ; \quad N_{2}=\pi k^{2}\left(\frac{L}{2 \pi}\right)^{2} ; N_{3}=\frac{4 \pi k^{3}}{3}\left(\frac{L}{2 \pi}\right)^{3}$
The density of conduction electrons:

$$
\begin{aligned}
n & =\int_{E_{g}}^{\infty} d E f_{n}(E) D_{n}(E) \\
& =2\left(\frac{m_{e} k_{\mathrm{B}} T}{2 \pi \hbar^{2}}\right)^{3 / 2} e^{\left(\mu-E_{g}\right) / k_{\mathrm{B}} T}
\end{aligned}
$$

The chemical potential for undoped:

$$
\mu=\frac{E_{g}}{2}+\frac{3 k_{\mathrm{B}} T}{4} \ln \left(\frac{m_{h}}{m_{e}}\right)
$$

Use hydrogenic model for doped:
$E=-\frac{e^{2}}{a_{0}} \Longrightarrow E=-\frac{e^{2}}{\varepsilon r_{0}}$ for $r_{0}=\frac{m_{e} \varepsilon a_{0}}{m^{*}}$ At low temperatures, $k_{\mathrm{B}} T \ll E_{g}$, for n_{0} the coefficient before above in n :

$$
\begin{aligned}
& n=\left(n_{0} N_{d}\right)^{1 / 2} \exp \left(-E_{d} / 2 k_{\mathrm{B}} T\right) \\
& p=\left(n_{0} N_{a}\right)^{1 / 2} \exp \left(-E_{a} / 2 k_{\mathrm{B}} T\right)
\end{aligned}
$$

Law of mass action forces equilibrium:

$$
n p=4\left(\frac{k_{\mathrm{B}} T}{2 \pi \hbar^{2}}\right)^{3}\left(m_{e} m_{h}\right)^{3 / 2} e^{-E_{g} / k_{\mathrm{B}} T}
$$

At $p n$-junctions, chemical potentials must match, and charge polarizes: electrons sink and holes float. Observe:

Fermi Surfaces

To find the BZ of a given lattice:

- Use $\boldsymbol{a}_{\boldsymbol{i}} \cdot \boldsymbol{b}_{\boldsymbol{j}}=2 \pi \delta_{i j}$ to find $\boldsymbol{b}_{\boldsymbol{j}}$
- Use the Wigner-Seitz Method Then draw the empty lattice FS:

$1 \mathrm{e}^{-}$	$k_{\mathrm{F}}=\sqrt{2 / \pi} \cdot \pi / a \approx 0.798 \cdot \pi / a$
$2 \mathrm{e}^{-}$	$k_{\mathrm{F}}=\sqrt{4 / \pi} \cdot \pi / a \approx 1.128 \cdot \pi / a$
$3 \mathrm{e}^{-}$	$k_{\mathrm{F}}=\sqrt{6 / \pi} \cdot \pi / a \approx 1.382 \cdot \pi / a$

Fold up BZs and select a zone scheme. At each BZ edge, the FS deflects so that $F S \perp B Z$, and a slight gap forms.

Number of electrons in a square lattice:
$N=1,2,3, \cdots=\frac{V \cdot \text { spins }}{V_{\text {site }}}=\frac{\pi k_{\mathrm{F}}^{2} \cdot 2}{\left(\frac{2 \pi}{L}\right)^{2}}$
An example of a Fermi Surface:

Hexagonal and rectangular BZ in 2D:

The De Haas-van Alphen Effect for the experimental determination of FS: magnetization, $M=\partial_{B} F$, is $\Delta(1 / B)$ periodic where $\Delta=2 \pi e / \hbar A$ for cross sectional area A. Possibly $\Delta_{1}, \Delta_{2}, \ldots$

In a magnetic field, motion is circular: $\hbar \frac{d k}{d t}=e \boldsymbol{v} \times \boldsymbol{B} \Longrightarrow \omega=\omega_{c}=\frac{e B}{m^{*}}$
Free electrons in B-fields form Landau levels, of $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega_{c}$, levels expand with increases in B, with degeneracy $D=e L^{2} B / 2 \pi \hbar$, and total energy $E=D \hbar \omega_{c} s^{2} / 2+\left(s-\frac{1}{2}\right)(N-s D) \hbar \omega_{c}$.

Quantum Hall Effect

Multiple ways to find the carrier concentration, including with oscillations:
$\Delta\left(\frac{1}{B}\right)=\frac{2 \pi e}{\hbar A} ; n=\frac{2 A}{(2 \pi)^{2}} \Rightarrow n=\frac{2 e}{h \Delta(1 / B)}$
With an expression for Hall Resistance:

$$
R_{x y}=\frac{B}{n e} \Longrightarrow n=\frac{B}{R_{x y} e}
$$

Equating Fermi to Landau, E_{F} to E_{n} :

$$
E_{\mathrm{F}}=\frac{n \hbar^{2} \pi}{m^{*}} \Longrightarrow n=\frac{e B}{2 \pi \hbar}\left(L-\frac{1}{2}\right)
$$

The Hall Resistance is quantized:

$$
R_{x y}=\frac{h}{e^{2} i} \approx \frac{25.8}{i} \mathrm{k} \Omega
$$

Superconductivity I

SC is an electric effect where $\rho=0$ for a phase bounded by T_{c} and field H_{c}.
Meissner effect of perfect diamagnetism:
$\boldsymbol{B}=\boldsymbol{H}_{\mathrm{app}}+\mu_{0} \boldsymbol{M}=0 \Longrightarrow \boldsymbol{M}=-\boldsymbol{H} / \mu_{0}$
London equation for penetration depth:
$\nabla^{2} B=\frac{B}{\lambda_{c}^{2}} ; \quad \lambda_{c}=\sqrt{\frac{m}{n e^{2} \mu_{0}}} \sim 10^{2}-10^{3} \AA$ Gibbs energy, $F=U-T S=-k_{\mathrm{B}} T \ln (Z)$:

$$
F_{N}(0, T)-F_{S}(0, T)=\frac{H_{c}^{2}(T)}{2 \mu_{0}}
$$

Heat capacity is discontinuous at T_{c} :
$\left.\left(C_{S}-C_{N}\right)\right|_{T=T_{c}}=\frac{T_{c}}{\mu_{0}}\left(\frac{d H_{c}(T)}{d T}\right)_{T=T_{c}}^{2}$
The intrinsic coherence length of ψ :

$$
\xi_{0}=2 \hbar v_{\mathrm{F}} / \pi E_{g}
$$

In impure SC , for mean free path ℓ :

$$
\xi \approx \sqrt{\xi_{0} \ell} ; \quad \lambda \approx \lambda_{c} \sqrt{\xi_{0} / \ell}
$$

Critical fields may be estimated as:

$$
H_{c 1} \approx \Phi_{0} / \pi \lambda^{2} ; \quad H_{c 2} \approx \Phi_{0} / \pi \xi^{2}
$$

Natural Constants

$$
\alpha=137.035999^{-1}
$$

$$
a_{0}=5.29177211 \times 10^{-11} \mathrm{~m}
$$

$$
c=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

$$
4 \pi \varepsilon_{0}=1.11265006 \times 10^{-10} \mathrm{C} /(\mathrm{V} \cdot \mathrm{~m})
$$

$$
e=1.60217662 \times 10^{-19} \mathrm{C}
$$

$$
h=6.62607004 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}
$$

$$
\hbar=1.05457180 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}
$$

$$
k_{\mathrm{B}}=1.38064852 \times 10^{-23} \mathrm{~J} / \mathrm{K}
$$

$$
m_{e}=9.10938356 \times 10^{-31} \mathrm{~kg}
$$

$$
N_{A}=6.02214086 \times 10^{23}
$$

Physics 140B at UCLA \diamond Formula Sheet (2 of 2)

Superconductivity II

BCS theory: electron phonon pairing creates bosons that all condense to the same energy state. This state is protected by an energy gap and particles cannot individually gain or lose energy.
e^{-}bound by energy Δ for attraction U, which is an energy gap of $\epsilon_{\mathrm{F}} \pm \Delta$:
$\Delta \approx-2 \hbar \omega \exp \left(-2 / U D\left(\epsilon_{\mathrm{F}}\right)\right) \sim 1 \mathrm{meV}$
BCS theory predicts an energy gap of:

$$
E_{g}=2 \Delta=3.5 k_{\mathrm{B}} T_{c}
$$

Macroscopic quantum wave function:

$$
\psi=\sqrt{n} e^{i \theta}
$$

Electron tunneling between SC gives
DC Josephson effect current, $\delta=\theta_{2}-\theta_{1}$:

$$
J=J_{0} \sin (\delta)
$$

AC effect $\omega=2 e V / \hbar \sim 500 \mathrm{MHz} / \mu \mathrm{V}$:

$$
J=J_{0} \sin (\delta-\omega t)
$$

In SC rings there is flux quantization:

$$
\Phi_{0}=2 \pi \hbar / q=h / 2 e
$$

SQUID behaves like Aharonov-Bohm: $J=2 J_{0} \sin (\delta) \cos (e \Phi / \hbar) ; \quad \Phi=$ area $\cdot\|\boldsymbol{B}\|$

Dia- and Paramagnetism

Magnetic susceptibility is $\chi \equiv \mu_{0} M / H$. $\chi<0 \rightarrow$ dia, and $\chi>0 \rightarrow$ paramagnet. SC are perfect diamagnets with $\chi=-1$. The typical values are $\chi \sim 10^{-3}-10^{-4}$.

Diamagnetism arises in inert gasses, and is captured by Larmor precession:

$$
\chi=\frac{\mu_{0}(N \mu)}{B}=-\frac{Z e^{2} \mu_{0}}{6 m} N\left\langle r^{2}\right\rangle
$$

Atoms with unpaired electrons, atomic Oxygen, and metals are paramagnetic. The energy is for $\mu_{B}=e \hbar / 2 m$:

$$
E=-\boldsymbol{\mu} \cdot \boldsymbol{B}=g \mu_{B} \boldsymbol{J} \cdot \boldsymbol{B}
$$

In two state systems with $x \equiv \mu B / k_{\mathrm{B}} T$:
$M=\sum N_{i} \mu_{i}=N \mu \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=N \mu \tanh (x)$
Curie-Brillouin law for $2 J+1$ levels, $x \equiv g J \mu B / k_{\mathrm{B}} T$, for high temperatures:

$$
M=N g J \mu_{B} B_{J}(x) \propto T^{-1}
$$

In terms of effective Bohr magnetons:
$M=\frac{N}{V} \frac{p^{2} \mu_{B}^{2}}{3 k_{\mathrm{B}}}\left(\frac{H}{T}\right) ; p=g(J(J+1))^{1 / 2}$
Where the Landau g-factor is given as:
$g=1+\frac{J(J+1)+S(S+1)-L(L+1)}{2 J(J+1)}$
Constant Pauli magnetism of metals is:
$M=D\left(\epsilon_{\mathrm{F}}\right) \mu_{B}^{2} B=3 N \mu^{2} / 2 \epsilon_{\mathrm{F}}$ for low T

Electronic State Symbols

Hund's Rules empirically usually work:

- Total spin S_{z} is maximized
- Orbital momentum, L_{z} is too
- Total orbital angular momentum:
$\star J=|L-S|$ less than half full
$\star J=|L+S|$ more than half full
Symbols are written as ${ }^{2 S+1} L_{J}$, where:

$L=\mathrm{S}$	P	D	F	G	H		J
\uparrow	\uparrow	\downarrow	\downarrow	\downarrow	\uparrow	\downarrow	
$L=0$	1	2	3	4	5	6	7

(Anti)-FERROMAGNETISM

Curie-Weiss Law around paramagneticferromagnetic transition temperature:

$$
\chi=C /\left(T-T_{c}\right)
$$

Exchange interactions (d-orbital) make spins align, as in the Heisenberg model: $E_{\text {ex }}=-2 J \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j} ; \quad$ with $J \sim 10 \mathrm{meV}$ $J<0 \rightarrow$ anti, and $J>0 \rightarrow$ ferromagnet.

The Hamiltonian for this system is:
$H=-\frac{1}{2} \sum_{i j}\left(J \sigma_{i} \sigma_{j}\right)+g \mu_{B} B \sum_{j} \sigma_{j}$
Approximated using mean field theory:

- Solve exactly for a small region
- Approximate the outside in mean

INTENTIONALLY LEFT BLANK

- Make the solution self-consistent With $m=M / N \mu$, and $t=k_{\mathrm{B}} T / N \mu^{2} \lambda$, next solve the transcendental equation:
$m=\tanh (m / t) \Rightarrow$ solns if $t<1$ i.e. $T<T_{c}$ Taylor Expansion to find susceptibility:

$$
\chi \sim \begin{cases}\left(T_{c}-T\right)^{1 / 2} & T<T_{c} \\ 1 /\left(T-T_{c}\right) & T_{c}<T\end{cases}
$$

Spins in ferromagnets may behave like phonons, where $i=p$, and $j=p+1$. For small oscillations, $S_{z} \approx S$, so with the equation of motion $d J / d t=\boldsymbol{\mu}_{p} \times \boldsymbol{B}_{p}$:

$$
S_{p}^{x / y}=a \exp (i(p k a-\omega t))
$$

Where $\omega=4 J s / \hbar \cdot(1-\cos (k a))$, which is for long wavelengths, $\hbar \omega=\left(2 J S a^{2}\right) k^{2}$.

For anti-ferromagnets, $T_{c} \rightarrow T_{\mathrm{N}}=\mu C$, where it has been found that in $T_{\mathrm{N}}<T$:

$$
\chi=2 C /\left(T+T_{\mathrm{N}}\right)
$$

Break AFM into two sublattices, and magnons solved with determinantal eqn.

$$
M=\left(C / \mu_{B}\right)\left(H /\left(T+T_{\mathrm{N}}\right)\right)
$$

Magnetic domain walls have exchange energy density $\sigma_{\text {ex }}=J S^{2}(\pi / N a)^{2} \cdot N$, anisotropy energy $\sigma_{\mathrm{an}}=K N a$, so by infimizing energy, $N=\left(\pi^{2} J S^{2} / K a^{3}\right)^{1 / 2}$, so, per wall area $\sigma_{w}=2 \pi\left(K J S^{2} / a\right)^{1 / 2}$.

