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Ch 6: Free Electron Gas

“In a very pure specimen at low tem-
peratures, the mean free path may be
as long as 108 interatomic spacings.”

Hamiltonian and TISE for free space:

H =
p2

2m
; Hψn = εnψn = − ~2

2m

d2ψn
dx2

1D wave functions and related energies:

ψn = A sin
(nπ
L
x
)

; εn =
~2

2m

(nπ
L

)2
Fermi Energy with 2 e− in each orbital:

ε
F

=
~2

2m

(n
F
π

L

)2
=

~2

2m

(
Nπ

2L

)2

In three dimensions with ki = niπ/L:

ψk = exp(ik · r); εk = ~2k2/2m

The Fermi Energy may be solved for:

ε
F
=

~2

2m
k
2

F
; N=

2 · 4πk3

F

3 · (2π/L)3
; ε

F
=

~2

2m

(
3π2N

V

)2/3

At low T use Fermi-Dirac Distribution:

f(ε) = (exp((ε− µ)/kBT ) + 1)
−1

Taylor Expansion of the exponential:

exp(x) =

∞∑
n=0

xn

n!
= 1+x+

x2

2
+
x3

6
+. . .

Total number of e− is found through:

N =

∫ ∞
0

dε D(ε)f(ε) =

∫ ε
F

0

dε D(ε)

Momentum of a free electron is:
p = mv = ~k

Lorentz Force law for charged particles:

F = m
dv

dt
= −e(E + v ×B)

Collision time τ ; Matthiessen’s Rule:
1

τ
=

1

τphonons
+

1

τdefects
+ . . .

The velocity in a uniform electric field:
v = −eEτ/m

Ohm’s Law is then (I = V/R):

j = nqv = ne2Eτ/m = σE

With steady state electric field:

vx = −(eτ/m)Ex − ωcτvy
vy = −(eτ/m)Ey + ωcτvx

vz = −(eτ/m)Ez

Hall experiment, induced field across:

Ey = −ωcτEx = −eB
m
τEx

Hall Coefficient for a current and field:

RH =
Ey
jxB

= − 1

ne

Ch 1: Crystal Structure

Primitive basis vectors of a lattice:

a1 a2 a3

The primitive cell is the smallest cell
that tessellates the volume:

Vcell = |a1 · a2 × a3|

The lattice site j is, for integers x, y, z:

rj = xja1 + yja2 + zja3

Translations are, for integers u:

T = u1a1 + u2a2 + u3a3

Miller Indices are (hkl), where Z makes
h, k, l integers; x, y, z are intercepts:

h =
Z

xint
k =

Z

yint
l =

Z

zint

where h represents h planes per Za1

a(x̂+ŷ−ẑ)/2; a(−x̂+ŷ+ẑ)/2; a(x̂−ŷ+ẑ)/2

a(x̂+ŷ)/2; a(ŷ+ẑ)/2; a(x̂+ẑ)/2

a(
√
3x̂+ ŷ)/2; a(−

√
3x̂+ ŷ)/2; cẑ

Parameter SC BCC FCC

Conventional vol. a3 a3 a3

Points per cell 1 2 4
Near neighbors 6 8 12

Neighbor distance a
√
3a/2

√
2a/2

Packing fraction π/6 π
√
3/8 π

√
2/6

Structure Positions of A Positions of B

NaCl 000; 1
2
1
2
0; 1

2
01
2
; 01

2
1
2

1
2
1
2
1
2
; 001

2
; 01

2
0; 1

2
00

CsCl 000; 001; 010. . .111 1
2
1
2
1
2

(BCC)

HCP 000; . . . 2
3
1
3
1
2
; . . . N/A

Diamond 000; . . . 1
4
1
4
1
4
; . . . N/A (FCC)

ZnS 000; 01
2
1
2
; 1
2
01
2
; 1
2
1
2
0 1

4
1
4
1
4

1
4
3
4
3
4

3
4
1
4
3
4

3
4
3
4
1
4

Ch 2: Reciprocal Lattice

Transform from a point on or a vector
to a reciprocal lattice point or vector.

Fourier Expansion periodic functions:

n(x)=
∑
p

np exp(i ·2πp/a ·x)=n(x+a)

The Fourier Coefficients are given by:

np =
1

a

∫ a

0

dx n(x) exp(−i2πp/a · x)

In three dimensions, this is equivalent:

n(r) =
∑
G

n
G

exp(iG · r) = n(r + T )

With the Fourier Coefficients given by:

n
G

=
1

Vcell

∫
cell

dV n(r) exp(−iG · r)

The reciprocal lattice vectors fulfill:

bi·aj = 2πδi,j ; G = v1b1+v2b2+v3b3

Reciprocal lattice vectors are found by:

b1=
2π

Vc

(a2×a3); b2=
2π

Vc

(a3×a1); b3=
2π

Vc

(a1×a2)

Primitive reciprocal lattice vectors are:
BCC: (2π/a)(ŷ+ẑ); (2π/a)(x̂+ẑ); (2π/a)(x̂+ŷ)

FCC: (2π/a)
{
(−x̂+ŷ+ẑ); (x̂−ŷ+ẑ); (x̂+ŷ−ẑ)

}
HCP: (2π/a)(x̂/

√
3+ŷ); (2π/a)(−x̂/

√
3+ŷ); (2π/c)ẑ

Bragg diffraction from parallel planes:

2d sin(θ) = nλ

To exceptionally good agreement:

∆k = k′ − k ≈ G

In scattering E and λ are conserved:

k2 =k′ 2 =⇒ (k + G)2 =k2

symmetry =⇒ k · (G/2)=(||G||/2)2

The Laue equations equivalently relate:

ai · ∆k = 2πvi, for i = 1, 2, 3

“The first Brillouin Zone is the smallest
volume entirely enclosed by planes that
are the perpendicular bisectors of the
reciprocal lattice vectors drawn from
the origin . . . exhibits all wavevectors
which can be Bragg-reflected . . . ”

Scattering intensity is related to scat-
tering amplitude and structure factor:

I ∝ (F
G

)2 = (NS
G

)2

Structure factor; sum over the unit cell:

S
G

=
∑
j

fj exp(−i2π(v1xj+v2yj+v3zj))

Atomic form factor is the integral:

fj = 4π

∫ ∞
0

dr r2nj(r)
sin(Gr)

Gr
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Ch 6: (Continued)

Electronic heat capacity at T << TF:

C =
π2NkBT

2TF
The mean free path is l = vFτ , and the
thermal conductivity of e− is given by:

K =
Cvl

3
=
π2nk2BTτ

3m
Lorenz Number ≈ constant for metals:

L =
K

σT
=
π2

3

(
kB
e

)2

Ch 3: Crystal Bonding

“The cohesive energy of a crystal is de-
fined as the energy that must be added
to the crystal to separate its compo-
nents into neutral free atoms at rest.”

Total energy, equilibrium separation:

Utot =
NU

2
; F =−dU

dr
;

dU(R0)

dr
=0

“Charge distribution around an atom
is not limited by a spherical boundary.”
Yet, typical radii are from 0.5 Å− 5 Å.

The inert gasses He,Ne,Ar,Kr,Xe are
weakly bound 0.1 eV/atom, relative to
the ionization energies 10 eV/atom,
and form the closely packed structures.

Lennard-Jones potential with Pauli
Exclusion, and Van der Waals energies:

U(R)=4ε

[( σ
R

)12
−
( σ
R

)6]
Utot =

N4ε

2

(
σ12

R12

∑
j
p−12
ij +

σ6

R6

∑
j
p−6
ij

)
Ionicbondsare electrostaticattractions,
and form moderately packed structures.

From repulsion, attraction of 2N ions,
for Madelung constant α, neighbors z,
experimental strength λ, and range ρ:

Utot = NUi = N

(
zλe−R/ρ − αq2

4πε0R

)
Utot(R0) = −(Nαq2)/(4πε0R0)·(1−ρ/R0)

“There is a continuous range of crystals
between the ionic and covalent limits.”

Covalent crystals form strong bonds by
“exchange interactions” of: ↑e−+ ↓e−,
and loosely packed structures, ex.C (s).

Metals have valence and conduction e−,
and somewhat close packed structures.

Hydrogen bonds are ionic with∼0.1 eV.

Defects, Amorphous Solids

Solids are not always perfect crystals,
and may be amorphous, or may have
thermally generated defects such as:
vacancies, substitutional impurities, or
interstitial atoms and impurities.

Vacancies are in the minimization of
the free energy F =E−TS, with S, the
Stirling Approximation, ∂F/∂Nv = 0,
and N >>Nv: Nv =N exp(−Ev/kBT ).

No long range order in amorphous
solids, so to describe atomic positions:

ρ(r) = 4πr2〈n(r)〉

Ch 7: Energy Bands

Begin with traveling wave momentum:
p=~k⇒H=p2/2m⇒ ψk(r)=eik·r

Electrons reflect at the boundary of the
Brillouin Zone, making standing waves.

e±iπx/a⇒
{
ψ+: eiπx/a+e−iπx/a=2 cos(πx/a)

ψ−: eiπx/a−e−iπx/a=2i sin(πx/a)

Where cos concentrates e− at ion cores,
and sin concentrates e− between cores.
ρ+= ||ψ+||2∝cos2(πx/a); ρ−∝sin2(πx/a)

Energy gap with the potential U(x) is:

〈Eg〉`=
1

||`||

∣∣∣∣∫
`

dx U(x)(||ψ+||2−||ψ−||2)

∣∣∣∣
Bloch’s Theorem: “ψ for the periodic
potential, U , are the product of a plane
wave, exp(ik · r), times a function, u,
with the periodicity of the potential.”

ψk(r) = uk(r) exp(ik · r)

Kronig Penney Model: periodic δ(x)
potential, spacing a and magnitude P

cos(Ka) + P sin(Ka)/Ka = cos(ka)

Wave equation for a general potential:

U(x) =
∑
G

UGe
iGx = 2

∑
G>0

UG cos(Gx)

Over an interval, the wave function is:

ψ(x) =
∑

k
C(k)eikx

With λk = ~2k2/2m, central equation
is equivalent to Schrödinger Equation:
(λk − ε)C(k) +

∑
G
UGC(k −G) = 0

Writing as a matrix, MC = 0, solving
|M | = 0 yields the energy spectrum εk.

“Crystal momentum” is pcrystal ≡ ~k
The empty lattice approximation takes
all G for a given k direction [hkl]:
ε(kx, ky, kz) = (~2/2m)(k+G)·(k+G)
= (~2

/2m)((kx+Gx)
2
+(ky+Gy)

2
+(kz+Gz)

2
)

N cells⇒ 2N orbitals+εF → conductivity

Ch 4: Crystal Vibrations

Newton’s Second Law insists F = ma.

Tofind ω(K),writeequationsofmotion,
ansatz u(t) = U exp(−iωt) exp(isKa),
write in matrix form, and solve the
characteristic equation for dispersion.

The first Brillouin Zone contains all
possible relative positions of the planes.
So, “by subtraction of an appropriate
reciprocal lattice vector from K, we al-
ways obtain an equivalent wave vector
in the first zone,” or −π/a < K < π/a.

Phonons donothave linearmomentum,
only relative momentum determined
with a reciprocal vector. In collisions,
phonons may be emitted or absorbed:

k + G = k′ ±K
Phononscatteringmaybeeithernormal,
k1+k2 =k3,orflipped,k1+k2 =k3+G.
Phonon energy is E = (n+ 1

2 )~ω.

Ch 5: Thermal Properties

Bose-Einstein dist. and heat capacity:

〈n〉 =
1

exp(~ω/kBT )− 1
; Cv =

(
∂U

∂T

)
v

The heat capacity is found using non-
dimensionalization and differentiation.
Note that with density of states D(ω):

U=
∑

s
Es〈n(Es)〉⇐⇒U=

∫
ω
dω D(ω)〈n(ω)〉E(ω)

For D = dN/dω, in 1 − 3 dimensions,
where N=Kvolume/Kunit for radius K:

N1=2K

(
L

2π

)1
; N2=πK

2

(
L

2π

)2
; N3=

4πK3

3

(
L

2π

)3
The Einstein Model isD=Nδ(ω−ωE),
and works best when T ∼TE =~ωE/kB:

Cv =3NkB

(
~ωE

kBT

)2
exp(~ωE/kBT )

(exp(~ωE/kBT )−1)
2

The Debye Model assumes ω = vK,
with a cutoff frequency ωD, from which
the density of states may be calculated.
In the low temperature limit, T << TD:

TD =
~v
kB

(
6π2N

V

)1/3
; Cv =

12π4

5
NkB

(
T

TD

)3
Using U = cx2− gx3, displacement is:

〈x〉 =

∫
x

dx x 〈n〉
/∫

x

dx 〈n〉 ≈ 3gkB
4c2

· T

Thermal and electrical conductivity:
(thermal j=−k∇T , where k=Cvvl/3)

Thermal T << TD k ∝ Cv ∝ T+3

Thermal T >> TD k ∝ 1/〈n〉 ∝ T−1
Electrical T << TD σ ∝ ... ∝ T−5
Electrical T >> TD σ ∝ 1/〈n〉 ∝ T−1
... = 1/〈n〉 · 1/coupling (1) · 1/cross section (2)
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