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WHITE DWARF STARS

White dwarf stars are stars that exhibit

quantum phenomena at a cosmic scale.

Begin with the gravitational energy:
3GM?

5 R

The energy from degeneracy pressure:
5/3

3 971' 2 p2 N,
Edegeneracy 10 - R2

Me

Egravity

Combining these we ﬁnd a relation:
Eiotal = Edegen + Egrav = A/R2 - B/R
By extremization, the preferred radius:
8REtota1 =0 when R = 2A/B —
(97‘(’2)2/3 h2 1
8  me GMY/ 3mi/ 2
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PERTURBATION THEORY

Perturbation theory is a formal way
to work from what we know about to
what we are interested in. Specifically:
H=Hy+H
In particular, if H' — AH’, we find that:
Un = P+ My + A+
E,=EY+ \E! + N*E2 +

NON-DEGENERATE P.T.

The first-order corrections to energy:
E,, = (nl H'|y)

The first-order corrgctions (;co states:

wl _ Z < m|Hl|wn>1/}O

n EO —EO "™

m#n
The second-order corrections to energy:

IS H o) \H’\¢°>|2
=D "

m¥#n
DEGENERATE P.T.

With degeneracy, in particular when
HY = Egp HUS = Byl Bo = By,
we proceed with a matrix method:

= (V7| H'|¢3)
Defining ¢° = a0 4+ B, we solve:

Hclza H(/zb « _ 1 [«
(H;a H) (ﬂ)E (ﬁ)

Eigenvalues are the first-order energy
corrections, and eigenvectors are the
first-order state corrections.  These
eigenvectors are “good states,” where
APl =ay? and Ay =by) for a#b. If
H!, = 0 the solution is non-degenerate.

SOME APPLICATIONS OF P.T. HYDROGEN FINE STRUCTURE

Delta function in infinite square well, The Hamiltonian for Hydrogen only

unperturbed is E = (72h%/2ma?)n?:  considers Coulomb attraction and is:
2 2
H' = ad(z — a/2) Ho= g 1
With 1D non-degenerate P.T. find: 2m dmeg T
£ 2a/a  n odd A relativistic correction to first order:
= 4
" 0 n even ro___ P
, rel 8m3c2
72 —2m(a/mhn)* n odd B (E,)? An
"0 n even el = omez \° T 1+ 1/2

Gaussian perturbation on free particle Correction due to spin-orbit coupling:

with L-periodic boundary conditions: ro_ e 1 L

H' = —Vyexp(—2?/a?) % 8mwep m2c?r3
With degenerate perturbation theory: L (Bp)?2nli(j+1)—€(€+1)—3/4]
Ei=H, +|H,,| 0 2me? L04+1/2)(0+1)

a\/TVo 2nma\2 ] The fine-structure adjusts by ~ 1 meV:
— 1Fexp|— i (E,)? in
El=EL+El, =—">(3-
rel+ so ( ] + 1/2

2mc?
Dipole-dipole interactions also adjust
by ~ 6 peV in the hyperfine structure.

Mathematical aside:

+oo B2
/m dp e (4450 V ZGXP(LLA)

Cubical box with introduced potential:
=Vp 0(a —x)8(a —y)f(a — z)

These energies may also be expressed
in terms of the fine-structure constant:

Noting that unperturbed energies are: o= e? ~ 1
T2h2 dmeghc  137.036
0 _ (TL2 +n2 +n2) . . .
nT oma2 e Tty T These identities help evaluate energies:
In the basis of {1112, Y121, %211}: (r=1 = [n?%a] !
B (%) = (¢ +1/2)n%a !

1 0
H/ VO 0 16 El
\o28 7

Weak-Field Zeeman Effect is splitting
from a magnetic field in atoms like Hy-
drogen, with magneton up = eh/2m:

M‘»—-o

(r=%) = [0 +1/2)(¢ + )n’a®) 7

THE VARIATIONAL PRINCIPLE

The variational principle gives an up-
per bound on the ground-state energy:

L+2S) |
i = B EE28) 5 Eys < (H) = (01H)
Using perturb:;c/ion;S}}eory we find: Applying to the Harmonic Oscillator:
E'= MBBextg'ﬁ = (1B Bextgm; R A1 22 2b 1/4
h H=- o a2 Ty s =
2m dx?

The Landé g-factor is given by:
J+1) —Ll+1)+s(s+1)
2j(j+1)

The Stark Effect is splitting from an
electric field in atoms like Hydrogen,

Finding (H) and (H )i, at b:mw/2h:
b mw?  hw
<H>—<T>+<V>—%+ - 2

g=1+

For the Hydrogen atom, k = €2 /4meq:

for example, if n = 2, using symmetry: 2 3/4
P 2b b2
0100 H=—- a Y= e
, 1000 " i
H = —p.E = —3¢|E|a 0 0 0 0| With (H)um at b= (8/7)(2mk/3h?)2:
0000 3h2b 8b  4mk?
_ (Hy=""" k| Z=—" ~—115eV
To first order correction E} =+3e|E|a. 2m T 3mh?
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MORE APPLICATIONS OF V.P.

In the Helium atom, Egs = —79.0 eV,
H=H-+ Vee, to rough approximation:
2
Hfl=—3(Vi+V3)
Which is quite simply a scaling of Fj:
E=-8-13.6 eV = —108.8 ¢V
The coulomb repulsion is given as:

2 2 2 1
—_— N + —_—
dmeg \ 1 To |ry — 7ol

Which again may be expressed in Ej:
E=(5/2)-13.6 eV = +34.0 eV
Summing these variational results find:
Ele = _748 eV

Which is close to the experimental.
Closer estimates may also account for
shielding of the nucleus be electrons.

‘/ee:

For the Hydrogen molecule, we find the
Hamiltonian is in terms of momentum
and Coulomb forces:

2 2 2
_p1+p2!+e <1 1 1 1 1 1)

H= —
2m 4meg

r12

With expressions Dy, Do, I, X1, & Xs:

e~
a 2D1—D2:t(2]X1—X2) T

Hyr=28[1-2
(H)= 1{ R 1+ 12

TWO-STATE STATICS

Let a two-state system be such that:
Hoyo = Eqv
[ (Walt) = dw

Hoyy, = Eviy

For wavefunction ¥ = c,,+cptp, with
unitary evolution under Hv = ihdp):

D) = catpae™ Bt 4 ey

TwO STATE DYNAMICS

Now, let H = Hy + H'(t), write the
general form of ¢, plug into Hy =
1thdytp, and use orthogonality to find:

éa = _% (CaH;a + CbHébe_i(Eb_Ea)t/h>
ép = —% (CbHIgb + CaHzlmefi(EaiEb)t/w

For small perturbations with H,, = 0,

Hj, =0, wo = (Ey — E,)/h, and

¢q(0) =1, ¢,(0) = 0, first order is:
cMy=1

. t ~
00 =~ [ @

SINUSOIDAL PERTURBATIONS

For sinusoidal time dependence to the
perturbation, assumptions as before,
with w ~ wp, transition probability is
P, (t) = |cp()|?, or in these limits:
[Vap|? sin?((wo — w)t/2)
Pa—>b(t) ~ h2 2
(wo —w)
Light has just such a time dependence,
which leads to absorption and stimu-
lated emission with probability above.

With incoherent light from all direc-
tions, we take the integral over w of
spectral density p(w) and directions:

7T|qrba|2

3co? plwo) t o t

Pb%a:

Spontaneous emission occurs at:
Py oy = wilg rpal”

3meghcd
Emission is governed by selection rules.
For hydrogenic atoms find: ¢/ —¢ = +1,
m' —m =0,=+1.

x t

absorption  stim emission sponemission
gl > e*l 9l
— LN

If we rather consider transition from a
discrete state, a, to a continuum, b, we
find for DOS, D, Fermi’s Golden Rule:
7| Vap|?
2h

a—b —

D(Eb)t x t

RABI OSCILLATIONS
With Vg, = Vi, and the perturbation:
o — H| H, _ 1 0 » Vet
i, 1Yy ) =3 Ve ™ 0

Through direct substitution:

_ % (%VaWHm@ii(Eb7Ea)t/h)

by = _% (Ca%ae—iwte—i(Ea—Eb)t/h>

With differentiation and substitution,
and w,=+/(wo —w)2+|Vgp|2/h2/2, find:
Voa \°
P, = <2h:r) sin?(wyt)
This becomes the perturbation result if
Wy — (Wo—w) /2, or |V |? < B2 (w—w,)?

Ca =

Note that the prefactor is a Lorentzian
of width Aw = |Vg|/h, and if w = wy,
transition are P, () = sin®(Vpt/2h).

MAGNETIC RESONANCE
For magnetic field By 2, and transverse
field, Byt(cos(wt)& — sin(wt)g), find:
vh By Brfei”t>

2 (Brfeiwt —Bo
For x= (‘;), Hyx=1ihoyx, and Q=~B:

a= % (Qe“‘”tb + woa)

—+B-S =

b= % (Qe_i‘”ta — wob)
Probability of a spin-flip starting from
|a) is, with W’ = \/(w — wp)? + Q2
02 sin?(w't/2)
Plotting the prefactor is a Lorentzian
centered at wy and width Aw = 29.

Py(t) =

0 2
" sin(w't/2)

SCATTERING

We assume the scattering wavefunction
is an incoming plane wave and an out-
going spherical wave for large 7:

ikr
W(r.0) = A [e““ + f(@)er }
Expand the scattering amplitude as:

(o)
F0) = ar(20+1)Py(cos(6))
£=0
Differential cross section D(0)=|f(6)|2
The total scattering cross section is:

o= /dQ D) = 47 S (20 + 1) asf?
=0

In one-dimensional systems, scattering

may be formulated as a phase shift §:

w(x) —A {eikz _ 6i(267kx)]
Here, the scattering amplitude is:
1 & :
f(0) = z Z(%—i—l)em sin(d¢) Py(cos(9))

£=0
Likewise, the scattering cross section is:
A S
(20 + 1) sin?(8,)

= ﬁ
£=0

g

IDENTICAL SCATTERING
For identical particles scattering, find:
(r) = ™0 ke BT O+ (x=O)]

Bosons have only 1 singlet; fermions
have 3 triplets too (| f(6) — f(7m —6)|?):

do 4
<d$2>bOSOnS B Z . |f(9) + f(Tr N 9)|2

eik-'r

<
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FIRST BORN APPROXIMATION

Schrédinger Equation, integral form:
etklr—mol

vlr) =vo(r) 5 fatro TSV roy(ro)

Assume that the scattering potential is
local to a region 7y, and that we look
from far away, with (rg) = ¥g(ro),
i.e. the limit of a weak scattering field:

F0:0)= =5z [#rae V(e

For low energy scattering, we find:
~__m 3
F0,9) = =5 /d ro V(7o)

For a spherically symmetric potential,
with k = 2ksin(0/2), ¢ independence:

f(O) = —%/g dr rV(r)sin(kr)

ENTANGLEMENT

Entanglement: the wavefunction isn’t
factorizable into single-particle states.

The 7V particle has zero charge and
spin. In the decay 7° — e~ + et the INTENTIONALLY LEFT BLANK
e~ and e’ must be in the singlet state:

1
|'(/J> = E (|T>6*Hf>e+ - H/>e*|T>e+)

Measurement of the e~ and et must
always yield one in |1) and one in || )
— the measurement determines which,
even if the particles are far apart.

Bell’s Theorem: local hidden variables
can’t predict experimental behavior.
For example, measuring singlet decay
with two detectors at angles traces a
cosine on average, not a triangle wave.

ADIABATIC THEOREM

In a gapped spectrum, with slow (adia-
batic) transformations to H that retain
gaps, nth state remains nth state. For
dynamic and geometric phases © and -,
the state undergoes unitary evolution:

t
On(t) —% /O it B,(7)
t

nlt) = i /0 0F (| Ortin)

Ry
=1 dR na n
i [ an g

INTENTIONALLY LEFT BLANK
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