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White Dwarf Stars

White dwarf stars are stars that exhibit
quantum phenomena at a cosmic scale.
Begin with the gravitational energy:

Egravity = −3

5

GM2

R
The energy from degeneracy pressure:

Edegeneracy =
3
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Combining these we find a relation:
Etotal = Edegen +Egrav = A/R2−B/R
By extremization, the preferred radius:
∂REtotal = 0 when R = 2A/B =⇒

=⇒ R =
(9π2)2/3
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Perturbation Theory

Perturbation theory is a formal way
to work from what we know about to
what we are interested in. Specifically:

H = H0 +H ′

In particular, ifH ′→λH ′, we find that:

ψn = ψ0
n + λψ1

n + λ2ψ2
n + . . .

En = E0
n + λE1

n + λ2E2
n + . . .

Non-Degenerate P.T.

The first-order corrections to energy:

E1
n = 〈ψ0

n|H ′|ψ0
n〉

The first-order corrections to states:

ψ1
n =

∑
m 6=n

〈ψ0
m|H ′|ψ0

n〉
E0
n − E0

m

ψ0
m

The second-order corrections to energy:

E2
n =

∑
m 6=n

|〈ψ0
m|H ′|ψ0

n〉|2

E0
n − E0

m

Degenerate P.T.

With degeneracy, in particular when
Hψ0

1 = Eaψ
0
a; Hψ0

1 = Ebψ
0
b ; Ea = Eb,

we proceed with a matrix method:

H ′ij = 〈ψ0
i |H ′|ψ0

j 〉
Defining ψ0 = αψ0

a + βψ0
b , we solve:(

H ′aa H ′ab
H ′ba H ′bb

)(
α
β

)
= E1

(
α
β

)
Eigenvalues are the first-order energy
corrections, and eigenvectors are the
first-order state corrections. These
eigenvectors are “good states,” where
Aψ0

a=aψ0
a and Aψ0

b = bψ0
b for a 6= b. If

H ′ab = 0 the solution is non-degenerate.

Some Applications of P.T.

Delta function in infinite square well,
unperturbed is E0

n = (π2~2/2ma2)n2:

H ′ = αδ(x− a/2)

With 1D non-degenerate P.T. find:

E1
n =

{
2α/a n odd

0 n even

E2
n =

{
−2m(α/π~n)2 n odd

0 n even

Gaussian perturbation on free particle
with L-periodic boundary conditions:

H ′ = −V0 exp(−x2/a2)

With degenerate perturbation theory:

E1
± = H ′aa ± |H ′ab|

= −a
√
πV0

L

{
1∓ exp

[
−
(

2nπa

L

)2 ]}
Mathematical aside:∫ +∞

−∞
dx e−(Ax2+Bx) =

√
π

A
exp

(
B2

4A

)
Cubical box with introduced potential:

H ′ = V0 θ(a− x)θ(a− y)θ(a− z)
Noting that unperturbed energies are:

E0
n =

π2~2

2ma2
(n2
x + n2

y + n2
z)

In the basis of {ψ112, ψ121, ψ211}:

H′=
V0

4
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0 1 16
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0 16
π2 1

; E1
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
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(1− 16
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
Weak-Field Zeeman Effect is splitting
from a magnetic field in atoms like Hy-
drogen, with magneton µB ≡ e~/2m:

H ′ = µBBext
(L+ 2S)

~
· ẑ

Using perturbation theory we find:

E1 = µBBext
〈L+ 2S〉

~
·ẑ = µBBextgmj

The Landé g-factor is given by:

g = 1 +
j(j + 1)− `(`+ 1) + s(s+ 1)

2j(j + 1)

The Stark Effect is splitting from an
electric field in atoms like Hydrogen,
for example, if n = 2, using symmetry:

H ′ = −µe·E = −3e|E|a


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


To first order correction E1

±=±3e|E|a.

Hydrogen Fine Structure

The Hamiltonian for Hydrogen only
considers Coulomb attraction and is:

H0 = − ~2

2m
∇2 − e2

4πε0

1

r

A relativistic correction to first order:

H ′rel = − p4

8m3c2

E1
rel =

(En)2

2mc2

(
3− 4n

`+ 1/2

)
Correction due to spin-orbit coupling:

H ′so =
e2

8πε0

1

m2c2r3
S ·L

E1
so =

(En)2

2mc2

(
2n[j(j+1)−`(`+1)−3/4]

`(`+ 1/2)(`+ 1)

)
The fine-structure adjusts by ∼ 1 meV:

E1
fs = E1

rel+E
1
so =

(En)2

2mc2

(
3− 4n

j + 1/2

)
Dipole-dipole interactions also adjust
by ∼ 6 µeV in the hyperfine structure.

These energies may also be expressed
in terms of the fine-structure constant:

α ≡ e2

4πε0~c
≈ 1

137.036

These identities help evaluate energies:

〈r−1〉 = [n2a]−1

〈r−2〉 = [(`+ 1/2)n3a2]−1

〈r−3〉 = [`(`+ 1/2)(`+ 1)n3a3]−1

The Variational Principle

The variational principle gives an up-
per bound on the ground-state energy:

Egs ≤ 〈H〉 = 〈ψ|H|ψ〉

Applying to the Harmonic Oscillator:

H=− ~2

2m

d2

dx2
+

1

2
mω2x2; ψ=

(
2b

π

)1/4
e−bx

2

Finding 〈H〉 and 〈H〉min at b=mω/2~:

〈H〉 = 〈T 〉+ 〈V 〉 =
~2b

2m
+
mω2

8b
=

~ω
2

For the Hydrogen atom, k = e2/4πε0:

H =
p2

2m
− k

r
; ψ =

(
2b

π

)3/4
e−br

2

With 〈H〉min at b = (8/π)(2mk/3~2)2:

〈H〉= 3~2b

2m
−k
√

8b

π
=−4mk2

3π~2
≈−11.5 eV
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More Applications of V.P.

In the Helium atom, Egs = −79.0 eV,

H = H̃ +Vee, to rough approximation:

H ≈ H̃ = − ~2

2m
(∇2

1 +∇2
2)

Which is quite simply a scaling of E1:

E = −8 · 13.6 eV = −108.8 eV

The coulomb repulsion is given as:

Vee = − e2

4πε0

(
2

r1
+

2

r2
− 1

|r1 − r2|

)
Which again may be expressed in E1:

E = (5/2) · 13.6 eV = +34.0 eV

Summing these variational results find:

EHe
1 = −74.8 eV

Which is close to the experimental.
Closer estimates may also account for
shielding of the nucleus be electrons.

For the Hydrogen molecule, we find the
Hamiltonian is in terms of momentum
and Coulomb forces:

H=−
p21 + p22

2m
!+

e2

4πε0

(
1

r12
+

1

R
−

1

r1
−

1

r′1
−

1

r2
−

1

r′2

)
With expressions D1, D2, I,X1, & X2:

〈H〉±=2E1

[
1− a

R
+
2D1−D2±(2IX1−X2)

1± I2

]
Two-State Statics

Let a two-state system be such that:{
H0ψa = Eaψa

H0ψb = Ebψb

}
⇐= 〈ψa|ψb〉 = δab

For wavefunction ψ = caψa+cbψb, with
unitary evolution under Hψ = i~∂tψ:

ψ(t) = caψae
−iEat/~ + cbψbe

−iEbt/~

Two State Dynamics

Now, let H = H0 + H ′(t), write the
general form of ψ, plug into Hψ =
i~∂tψ, and use orthogonality to find:

ċa = − i
~

(
caH

′
aa + cbH

′
abe
−i(Eb−Ea)t/~

)
ċb = − i

~

(
cbH

′
bb + caH

′
bae
−i(Ea−Eb)t/~

)
For small perturbations with H ′aa = 0,
H ′bb = 0, ω0 = (Eb − Ea)/~, and
ca(0) = 1, cb(0) = 0, first order is:

c(1)
a (t) = 1

c
(1)
b (t) = − i

~

∫ t

0

dt̄ H ′ba(t̄)eiω0 t̄

Sinusoidal Perturbations

For sinusoidal time dependence to the
perturbation, assumptions as before,
with ω ∼ ω0, transition probability is
Pa→b(t) = |cb(t)|2, or in these limits:

Pa→b(t) ≈
|Vab|2

~2

sin2((ω0 − ω)t/2)

(ω0 − ω)2

Light has just such a time dependence,
which leads to absorption and stimu-
lated emission with probability above.

With incoherent light from all direc-
tions, we take the integral over ω of
spectral density ρ(ω) and directions:

Pb→a =
π|q rba|2

3ε0~2
ρ(ω0) t ∝ t

Spontaneous emission occurs at:

Pb→a =
ω3

0 |q rba|2

3πε0~c3
t ∝ t

Emission is governed by selection rules.
For hydrogenic atoms find: `′−` = ±1,
m′ −m = 0,±1.

absorption

γ e−
stim emission
γ

spon emission

γe−

If we rather consider transition from a
discrete state, a, to a continuum, b, we
find for DOS, D, Fermi’s Golden Rule:

Pa→b =
π|Vab|2

2~
D(Eb) t ∝ t

Rabi Oscillations

With Vab = Vba, and the perturbation:

H ′ =

(
H ′aaH

′
ab

H ′baH
′
bb

)
=

1

2

(
0 Vabe

iωt

Vbae
−iωt 0

)
Through direct substitution:

ċa = − i
~

(
cbVabe

+iωte−i(Eb−Ea)t/~
)

ċb = − i
~

(
caVbae

−iωte−i(Ea−Eb)t/~
)

With differentiation and substitution,
and ωr=

√
(ω0−ω)2+|Vab|2/~2/2, find:

Pa→b =

(
Vba

2~ωr

)2

sin2(ωrt)

This becomes the perturbation result if
ωr→(ω0−ω)/2, or |Vab|2<<~2(ω−ωr)2

Note that the prefactor is a Lorentzian
of width ∆w = |Vab|/~, and if ω = ω0,
transition are Pa→b(t) = sin2(Vabt/2~).

Magnetic Resonance

For magnetic field B0 ẑ, and transverse
field, Brf(cos(ωt)x̂− sin(ωt)ŷ), find:

H = −γB·S = −γ~
2

(
B0 Brfe

iωt

Brfe
−iωt −B0

)
For χ=

(
a
b

)
, Hχ= i~∂tχ, and Ω=γBrf :

ȧ =
i

2

(
Ωe+iωtb+ ω0a

)
ḃ =

i

2

(
Ωe−iωta− ω0b

)
Probability of a spin-flip starting from
|a〉 is, with ω′ ≡

√
(ω − ω0)2 + Ω2:

Pb(t) =

∣∣∣∣ Ω

ω′
sin(ω′t/2)

∣∣∣∣2= Ω2 sin2(ω′t/2)

(ω − ω0)2 + Ω2

Plotting the prefactor is a Lorentzian
centered at ω0 and width ∆w = 2Ω.

Scattering

We assume the scattering wavefunction
is an incoming plane wave and an out-
going spherical wave for large r:

ψ(r, θ) = A

[
eikz + f(θ)

eikr

r

]
Expand the scattering amplitude as:

f(θ) =

∞∑
`=0

a`(2`+ 1)P`(cos(θ))

Differential cross section D(θ)= |f(θ)|2.
The total scattering cross section is:

σ =

∫
dΩ D(θ) = 4π

∞∑
`=0

(2`+ 1)|a`|2

In one-dimensional systems, scattering
may be formulated as a phase shift δ:

ψ(x) = A
[
eikx − ei(2δ−kx)

]
Here, the scattering amplitude is:

f(θ) =
1

k

∞∑
`=0

(2`+1)eiδ` sin(δ`)P`(cos(θ))

Likewise,the scattering cross section is:

σ =
4π

k2

∞∑
`=0

(2`+ 1) sin2(δ`)

Identical Scattering

For identical particles scattering, find:

ψ(r) = eik0·r+e−ik0·r+[f(θ)+f(π−θ)]e
ik·r

|r|
Bosons have only 1 singlet; fermions
have 3 triplets too (|f(θ)− f(π− θ)|2):(

dσ

dΩ

)
bosons

=
4

4
· |f(θ) + f(π − θ)|2
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First Born Approximation

Schrödinger Equation, integral form:

ψ(r)=ψ0(r)−
m

2π~2

∫
d3r0

eik|r−r0|

|r − r0|
V (r0)ψ(r0)

Assume that the scattering potential is
local to a region r0, and that we look
from far away, with ψ(r0) ≈ ψ0(r0),
i.e. the limit of a weak scattering field:

f(θ, ϕ) = − m

2π~2A

∫
d3r0 e

−ik·r0V (r0)ψ(r0)

= − m

2π~2

∫
d3r0 e

i(k′−k)·r0V (r0)

For low energy scattering, we find:

f(θ, ϕ) ≈ − m

2π~2

∫
d3r0 V (r0)

For a spherically symmetric potential,
with κ ≡ 2k sin(θ/2), ϕ independence:

f(θ) ≈ − 2m

~2κ

∫ ∞
0

dr r V (r) sin(κr)

Entanglement

Entanglement: the wavefunction isn’t
factorizable into single-particle states.

The π0 particle has zero charge and
spin. In the decay π0 → e− + e+, the
e− and e+ must be in the singlet state:

|ψ〉 =
1√
2

(|↑〉e− |↓〉e+ − |↓〉e− |↑〉e+)

Measurement of the e− and e+ must
always yield one in | ↑ 〉 and one in | ↓ 〉
— the measurement determines which,
even if the particles are far apart.

Bell’s Theorem: local hidden variables
can’t predict experimental behavior.
For example, measuring singlet decay
with two detectors at angles traces a
cosine on average, not a triangle wave.

Adiabatic Theorem

In a gapped spectrum, with slow (adia-
batic) transformations to H that retain
gaps, nth state remains nth state. For
dynamic and geometric phasesΘandγ,
the state undergoes unitary evolution:

Θn(t) ≡ −1

~

∫ t

0

dt̄ En(t̄)

γn(t) ≡ i
∫ t

0

dt̄ 〈ψn|∂tψn〉

= i

∫ Rf

Ri

dR 〈ψn|∂Rψn〉
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