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Three Dimensional QM

The TISE still holds as Hψ = Eψ, and
the extension from 1D to 3D follows:

x =⇒ x, y, z ⇐⇒ r, θ, ϕ

ψ(x) =⇒ ψ(x, y, z) ⇐⇒ ψ(r, θ, ϕ)

V (x) =⇒ V (x, y, z) ⇐⇒ V (r, θ, ϕ)

p = −i~ ∂

∂x
|ψ〉 x̂ =⇒ p = −i~∇|ψ〉

Ψn(x, t) =⇒ Ψn(r, t) = ψn(r)e−iEnt/~

Particle in a Box

Assume separable ψ=X(x)Y (y)Z(z),
which for a free particle becomes:

1

X

d2X

dx2
+

1

Y

d2Y

dy2
+
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Z

d2Z

dz2
= −2mE

~2

The solutions are sines and cosines of
wavenumber ki, where the energy is:

E =
~2

2m
(k2
x + k2

y + k2
z)

Box of size a3 at the origin removes cos
terms, so wave function forAi=

√
2/a:

ψ(x, y, z) =
∏3

i=1
Ai sin

(niπ
a
xi

)
Spherical Schrödinger Eq

Hamiltonian is chosen as H=p2/2m+V.
The Laplacian in spherical coordinates:
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∂ϕ2


With potential V (r), the Schrödinger
equation is then solved by separation of
variables and power series expansion:
• Separate ψ(r, θ, ϕ)=R(r)Y (θ, ϕ)
• Substitute, divide, and cancel
• Separate variables (equate to 0)

◦ Set equal to ±`(`+ 1)
• Separate Y (θ, ϕ) = Θ(θ)Φ(ϕ)
• Substitute, divide, and cancel
• Separate variables (equate to 0)

◦ Set equal to ±m2

• Solve for Φ with sep. of variables
• Solve for Θ with power series
• Solve for R with power series for

a specific potential energy V (r)
• Multiply ψ = R(r) Θ(θ) Φ(ϕ)

The solutions Y (θ, ϕ) = Θ(θ) Φ(ϕ) are
spherical harmonics for integers |m|≤ l:

Y ml =

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

eimϕPml (cos θ)

Pml is the associated Legendre function
for ε =−1m for 0 < m and 1 otherwise:

Pml = ε
(1− x2)|m|/2

2ll!

(
d

dx

)l+|m|
(x2 − 1)l

Infinite Spherical Well

RadialequationforR(r),withu=rR(r):

− ~2

2m

d2u

dr2
+

(
V +

~2

2m

`(`+ 1)

r2

)
u = Eu

For the spherical well, the potential is:

V (r) =

{
0 r ≤ a
∞ a < r

For ` = 0 the solution is simple:
d2u

dr2
= −k2u =⇒ u(r) = A sin(kr)

ψn,0,0 =
sin(nπr/a)√

2πa r
; En,0 =

n2π2~2

2ma2

R, with spherical Bessel functions j`:
R(r) = Aj`(kr)

The spherical Bessel functions are:

j`(x) = (−x)`
(

1

x

d

dx

)̀
sin(x)

x
The Bessel functions have multiple (∞)
zeros, βn`, where k = βn`/a, and so:

ψn,`,m=An` j`(βn`r/a)Y m` ; En,`=
~2β2

n`

2ma2

The Hydrogen Atom

For the Hydrogen atom, the potential is:

V (r) = − 1

4πε0
· e

2

r

= −e
2

r
(CGS)

p+

e−

Bound states are found from solving
the radial equation for u = rR with
κ=
√
−2mE/~2, ρ=κr, ρ0 =2me2/~2κ:
d2u

dρ2
=

(
1− ρ0

ρ
+
`(`+ 1)

ρ2

)
u

Using limits of ρ large and small, guess:

u(ρ) = ρ`+1e−ρv(ρ) for some v(ρ)

Guess the power series ansatz:

v(ρ) =
∑∞

j=0
ajρ

j

Plugging into the ODE and solving, the
solutions blow up unless series ends atn:

aj+1 =
2(j + `+ 1− n)

(j + 1)(j + 2`+ 2)
aj

End is from ρ0 = 2n, which sets E as:

En = − 1

n2

(
me4

2~2

)
=
E1

n2
= −13.61

n2
eV

The ground state energy is not at −∞
because of the uncertainty principle.

The Bohr Radius, of state E1 is:

a =
~2

me2
= 0.529 Å

Quantum numbers |m| ≤ l ≤ n− 1.

Angular Momentum

Radial momentum is, from L = r× p:

pr =
1

2

(
1

r
r · p+ p · r1

r

)
=

~
i

1

r

∂

∂r
r

Some angular momentum operators:
Lz = xpy − ypz
L± = Lx ± iLy
L2 = L2

x + L2
y + L2

z

= L±L∓ + L2
z ∓ ~Lz

Their representations as operators:

Lz =
~
i

∂

∂ϕ

L± = ±~e±iϕ

(
∂

∂θ
± i cot(θ)

∂

∂ϕ

)
L2 = −~2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

)
Commutator identities:

[A,B] ≡ AB −BA
[A,B] = −[B,A]

[A,B−C] = [A,B]− [A,C]

[A,BC] = [A,B]C +B[A,C]

These commutation relations hold:
[Li, Lj ] = εijki~Lk

[Lz, L±] = ±~L±
[Li, L

2] = 0

[L±, L∓] = ±2~Lz
[L±, L

2] = 0

Hamiltonian for a central potential:

H =
p2
r

2m
+

L2

2mr2
+ V (r)

Simultaneous observables of Y m` =|`,m〉:
L2|`,m〉 = ~2`(`+ 1)|`,m〉
Lz|`,m〉 = ~m|`,m〉
H|`,m〉 = E|`,m〉

Raising/lowering operators act on m:
Lz(L±|`,m〉) = ~(m± 1)(L±|`,m〉)
L2(L±|`,m〉) = ~2`(`+ 1)(L±|`,m〉)

For `=n/2, m={−`,−`+1, . . . , `−1, `}

Matrix elements are found as:
〈`,m′|L+|`,m〉=~

√
`(`+1)−m(m+1)δm′,m+1

〈`,m′|L−|`,m〉=~
√
`(`+1)−m(m−1)δm′,m−1

〈`,m′|Lz |`,m〉=~mδm′,m

Ex. m1 and m2, separated by r0, and
µ=m1m2/(m1+m2), thence I = µr2

0:

H=
L2

2I
⇒En,`=(n+1/2)~ω+

`(`+1)

2I
~2

Expectation values, and time evolution
may be calculated for a given state.
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Spin

Spin is an additional degree of freedom.
For two states, it may be expressed as:

|↑〉 = | 12 ,
1
2 〉 and |↓〉 = | 12 ,−

1
2 〉

(or) χ =

(
a
b

)
= aχz+ + bχz−

Spin operators commute as:
[Si, Sj ] = i~Skεijk

Eigenvalue relations are just like for L.

The spin measurement operators, or
the Pauli Matrices are with ~/2 = 1:

Sx=

(
0 1
1 0

)
, Sy=

(
0 −i
i 0

)
, Sz=

(
1 0
0 −1

)
Expectation values may be found with:

〈Si〉 = χ†Siχ

Si matrices are unitary, so 〈S2
i 〉=~2/4.

The eigenvectors may be set as a basis
of eigenvectors of Si, and the probabili-
ties of measurement thence calculated:

χy
+=

(
1
−i

)
, χy
−=

(
1
i

)
, χx

+=

(
1
1

)
, χx
−=

(
1
−1

)
Spins in a Magnetic Field

With magnetic field in ẑ, spins rotate:
H = −γB · Sz

Spinor states have an energy splitting,
and so are time dependent, and rotates
at angle α, with frequency ω=γ||B||:

χ(t) =

(
cos(α/2) exp(iγB0t/2)

sin(α/2) exp(−iγB0t/2)

)
Even an infinitesimal field may flip S:

〈Sx〉 = ~
2 sin(α) cos(ωt)

〈Sy〉 = −~
2 sin(α) sin(ωt)

〈Sz〉 = ~
2 cos(α)


Force arises in an inhomogeneous field
and leads to the Stern-Gerlach result.

Adding Angular Momenta

Multiple particles: spin operators act
on each particle to yield the usual
eigenvalue relations, and m = m1+m2.

Two particles: |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉, so,
considering the lowering operator S−,
one arrives at “triplets” and “singlets”:
|1, 1〉 =|↑↑〉
|1, 0〉 = 1√

2
(|↑↓〉+ |↓↑〉)

|1,−1〉 =|↓↓〉

 s = 1

{
|0, 0〉 = 1√

2
(|↑↓〉 − |↓↑〉)

}
s = 0

Operators may act on these to yield
eigenvalue relations, and determine s.

Electromagnetic Effects

With both electric scalar potential φ,
and magnetic vector potential A, find:

H =
(p− eA)2

2m
+ qφ+ V (x)

With φ = 0, and A = B/2·(−yx̂+xŷ),
the Landau Level quantization arises:

H =
p2

2m
+
mω2

0Q
2

2
; E = (n+ 1

2 )~ω0

Gauge transformation A → A + ∇Λ,
as in AB Effect where a beam is split:

Ψ→ ΨeiqΛ/~
Aharonov-Bohm−−−−−−−−−−→ Λ = Φ

Identical Particles

For multiple particles, H generalizes:

H = − ~2

2m
∇2

1 −
~2

2m
∇2

2 + V (r1, r2)

Particles are identical in QM, so they
cannot be labeled, so two possibilities.
Particles with integer spin are bosons,
and particles with half-integer spin are
fermions. Wave functions follow from
a Slater Determinant and Permanent:

ΨF = A det

∣∣∣∣ψ1(r1) ψ2(r1)
ψ1(r2) ψ2(r2)

∣∣∣∣
= A(ψ1(r1)ψ2(r2)− ψ1(r2)ψ2(r1))

ΨB = A perm

∣∣∣∣ψ1(r1) ψ2(r1)
ψ1(r2) ψ2(r2)

∣∣∣∣
= A(ψ1(r1)ψ2(r2) + ψ1(r2)ψ2(r1))

Noting that if ψ1 = ψ2, then Ψ = 0,
which is the Pauli exclusion principle.
Exchange relations then become clear:

ΨF (r1, r2) = −ΨF (r2, r1)

ΨB(r1, r2) = +ΨB(r2, r1)

Exchange forces can be calculated, viz,
bosons cluster and fermions don’t:
〈(x1−x2)

2〉BF = 〈x2〉1 +〈x2〉2−2〈x〉1〈x〉2∓exch

exch = 2

∣∣∣∣∣
∫
x1

ψ
∗
2 (x1)x1ψ1(x1)

∫
x2

ψ
∗
1 (x2)x2ψ2(x2)

∣∣∣∣∣
2

Non-Interacting Particles

For non-interacting particles, one may
pretend that they are separate, so that
V (r1, r2) = V (r1) + V (r2), so ψ1 and
ψ2 each, fulfill the one-particle S. Eqn,
and have total energy of E = E1 +E2.

Total wave functions are products of
the single wave functions. Linearity
of Ψ = ψ1ψ2, implies entanglement,
where a particle’s state and another
can be linked:measure one get one free!

Free Electron Gas

Begin by assuming that electrons are
non-interacting, and that they reside in
a periodic solid modeled by an L×L×L
box with periodic boundaries. If this
is the case, then for a single particle
solved for by separation of variables,
normalized by A =

√
8/L3, and with

wave vectors ki = niπ/L, for ni ∈ N:

ψkxkykz = A sin (kxx) sin (kyy) sin (kzz)

Whose energy eigenvalue is evidently:

Ekxkykz =
~2

2m
(k2
x+k2

y +k2
z) =

~2k · k
2m

The highest occupied energy relates to
a wave vector kF known as the Fermi
radius, which is for N electrons in real
volume V , accounting for the 2 spins:

2·4π
3
k3

F =N

(
2π

L

)3
=⇒ kF =

(
3π2N

V

)1/3
Related Fermi quantities are defined:

pF = ~kF

vF = pF/m = ~kF/m ∼ 106 m/s

εF = p2
F/2m = ~2k2

F/2m 1− 10 eV

TF = εF/kB = ~2k2
F/2mkB ∼ 105 K

The degeneracy pressure is outwards:

P = −∂Etot

∂V
=

2

3

Etot

V
=

2

3

~2k5
F

10π2m

Kronig-Penney Model
Bloch’s Theorem reduces periodic po-
tential problems to solving withing one
unit cell. For an a-periodic potential:

ψ(x+a)eiKa=ψ(x), ring:ψ(x)eiNKa=ψ(x)

The KP Model assumes a potential:

V (x) = α

N−1∑
j=0

δ(x− ja)

The general solution in the free region:

ψ(x) = A sin(kx) +B cos(kx)

With Bloch’s Theorem and boundaries:

cos(qa) = cos(ka) +
mα

~2k
sin(ka)

Non-dimensional consistency relation:

f(z) ≡ cos(z) + β sinc(z)

For negative energies and z, one finds:

f(z) ≡ cosh(z) + β sinhc(z)

This is a quantitative description of
bands and gaps in an energy spectrum.
There are N states between z = ±1,
which effectively form a continuum.
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