Physics 115B at UCLA \diamond Formula Sheet (1 of 2)

Three Dimensional QM

The TISE still holds as $H \psi=E \psi$, and the extension from 1D to 3D follows:
$x \Longrightarrow x, y, z \Longleftrightarrow r, \theta, \varphi$ $\psi(x) \Longrightarrow \psi(x, y, z) \Longleftrightarrow \psi(r, \theta, \varphi)$ $V(x) \Longrightarrow V(x, y, z) \Longleftrightarrow V(r, \theta, \varphi)$ $p=-i \hbar \frac{\partial}{\partial x}|\psi\rangle \hat{\boldsymbol{x}} \Longrightarrow p=-i \hbar \nabla|\psi\rangle$ $\Psi_{n}(x, t) \Longrightarrow \Psi_{n}(\boldsymbol{r}, t)=\psi_{n}(\boldsymbol{r}) e^{-i E_{n} t / \hbar}$

Particle in a Box

Assume separable $\psi=X(x) Y(y) Z(z)$, which for a free particle becomes:

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}+\frac{1}{Z} \frac{d^{2} Z}{d z^{2}}=-\frac{2 m E}{\hbar^{2}}
$$

The solutions are sines and cosines of wavenumber k_{i}, where the energy is:

$$
E=\frac{\hbar^{2}}{2 m}\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)
$$

Box of size a^{3} at the origin removes cos terms, so wave function for $A_{i}=\sqrt{2 / a}$:

$$
\psi(x, y, z)=\prod_{i=1}^{3} A_{i} \sin \left(\frac{n_{i} \pi}{a} x_{i}\right)
$$

Spherical Schrödinger EQ

Hamiltonian is chosen as $H=p^{2} / 2 m+V$. The Laplacian in spherical coordinates: $\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta}\left(\frac{\partial^{2}}{\partial \varphi^{2}}\right)$
With potential $V(r)$, the Schrödinger equation is then solved by separation of variables and power series expansion:

- Separate $\psi(r, \theta, \varphi)=R(r) Y(\theta, \varphi)$
- Substitute, divide, and cancel
- Separate variables (equate to 0)
- Set equal to $\pm \ell(\ell+1)$
- Separate $Y(\theta, \varphi)=\Theta(\theta) \Phi(\varphi)$
- Substitute, divide, and cancel
- Separate variables (equate to 0) - Set equal to $\pm m^{2}$
- Solve for Φ with sep. of variables
- Solve for Θ with power series
- Solve for R with power series for a specific potential energy $V(r)$
- Multiply $\psi=R(r) \Theta(\theta) \Phi(\varphi)$

The solutions $Y(\theta, \varphi)=\Theta(\theta) \Phi(\varphi)$ are spherical harmonics for integers $|m| \leq l$:
$Y_{l}^{m}=\sqrt{\frac{(2 l+1)}{4 \pi} \frac{(l-|m|)!}{(l+|m|)!}} e^{i m \varphi} P_{l}^{m}(\cos \theta)$ P_{l}^{m} is the associated Legendre function for $\epsilon=-1^{m}$ for $0<m$ and 1 otherwise: $P_{l}^{m}=\epsilon \frac{\left(1-x^{2}\right)^{|m| / 2}}{2^{l} l!}\left(\frac{d}{d x}\right)^{l+|m|}\left(x^{2}-1\right)^{l}$

Infinite Spherical Well
Radial equation for $R(r)$, with $u=r R(r)$: $-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\left(V+\frac{\hbar^{2}}{2 m} \frac{\ell(\ell+1)}{r^{2}}\right) u=E u$

For the spherical well, the potential is:

$$
V(r)= \begin{cases}0 & r \leq a \\ \infty & a<r\end{cases}
$$

For $\ell=0$ the solution is simple:

$$
\frac{d^{2} u}{d r^{2}}=-k^{2} u \Longrightarrow u(r)=A \sin (k r)
$$

$\begin{gathered}d r^{2} \\ \psi_{n, 0,0}\end{gathered}=\frac{\sin (n \pi r / a)}{\sqrt{2 \pi a} r} ; E_{n, 0}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}$
R, with spherical Bessel functions j_{ℓ} : $R(r)=A j_{\ell}(k r)$
The spherical Bessel functions are:

$$
j_{\ell}(x)=(-x)^{\ell}\left(\frac{1}{x} \frac{d}{d x}\right)^{\ell} \frac{\sin (x)}{x}
$$

The Bessel functions have multiple (∞) zeros, $\beta_{n \ell}$, where $k=\beta_{n \ell} / a$, and so:
$\psi_{n, \ell, m}=A_{n \ell} j_{\ell}\left(\beta_{n \ell} r / a\right) Y_{\ell}^{m} ; E_{n, \ell}=\frac{\hbar^{2} \beta_{n \ell}^{2}}{2 m a^{2}}$

The Hydrogen Atom

For the Hydrogen atom, the potential is:

$$
\begin{aligned}
V(r) & =-\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{e^{2}}{r} \\
& =-\frac{e^{2}}{r}(\mathrm{CGS})
\end{aligned}
$$

Bound states are found from solving the radial equation for $u=r R$ with $\kappa=\sqrt{-2 m E / \hbar^{2}}, \rho=\kappa r, \rho_{0}=2 m e^{2} / \hbar^{2} \kappa:$

$$
\frac{d^{2} u}{d \rho^{2}}=\left(1-\frac{\rho_{0}}{\rho}+\frac{\ell(\ell+1)}{\rho^{2}}\right) u
$$

Using limits of ρ large and small, guess:
$u(\rho)=\rho^{\ell+1} e^{-\rho} v(\rho)$ for some $v(\rho)$
Guess the power series ansatz:

$$
v(\rho)=\sum_{j=0}^{\infty} a_{j} \rho^{j}
$$

Plugging into the ODE and solving, the solutions blow up unless series ends at n :

$$
a_{j+1}=\frac{2(j+\ell+1-n)}{(j+1)(j+2 \ell+2)} a_{j}
$$

End is from $\rho_{0}=2 n$, which sets E as:
$E_{n}=-\frac{1}{n^{2}}\left(\frac{m e^{4}}{2 \hbar^{2}}\right)=\frac{E_{1}}{n^{2}}=-\frac{13.61}{n^{2}} \mathrm{eV}$
The ground state energy is not at $-\infty$
because of the uncertainty principle.
The Bohr Radius, of state E_{1} is:

$$
a=\frac{\hbar^{2}}{m e^{2}}=0.529 \AA
$$

Quantum numbers $|m| \leq l \leq n-1$.

Angular Momentum

Radial momentum is, from $\boldsymbol{L}=\boldsymbol{r} \times \boldsymbol{p}$:

$$
p_{r}=\frac{1}{2}\left(\frac{1}{r} r \cdot p+p \cdot r \frac{1}{r}\right)=\frac{\hbar}{i} \frac{1}{r} \frac{\partial}{\partial r} r
$$

Some angular momentum operators:

$$
\begin{aligned}
L_{z} & =x p_{y}-y p_{z} \\
L_{ \pm} & =L_{x} \pm i L_{y} \\
L^{2} & =L_{x}^{2}+L_{y}^{2}+L_{z}^{2} \\
& =L_{ \pm} L_{\mp}+L_{z}^{2} \mp \hbar L_{z}
\end{aligned}
$$

Their representations as operators:
$L_{z}=\frac{\hbar}{i} \frac{\partial}{\partial \varphi}$
$L_{ \pm}= \pm \hbar e^{ \pm i \varphi}\left(\frac{\partial}{\partial \theta} \pm i \cot (\theta) \frac{\partial}{\partial \varphi}\right)$
$L^{2}=-\hbar^{2}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right)$
Commutator identities:

$$
\begin{aligned}
{[A, B] } & \equiv A B-B A \\
{[A, B] } & =-[B, A] \\
{[A, B-C] } & =[A, B]-[A, C]
\end{aligned}
$$

$$
[A, B C]=[A, B] C+B[A, C]
$$

These commutation relations hold:

$$
\begin{aligned}
{\left[L_{i}, L_{j}\right] } & =\varepsilon_{i j k} i \hbar L_{k} \\
{\left[L_{z}, L_{ \pm}\right] } & = \pm \hbar L_{ \pm} \\
{\left[L_{i}, L^{2}\right] } & =0 \\
{\left[L_{ \pm}, L_{\mp}\right] } & = \pm 2 \hbar L_{z} \\
{\left[L_{ \pm}, L^{2}\right] } & =0
\end{aligned}
$$

Hamiltonian for a central potential:

$$
H=\frac{p_{r}^{2}}{2 m}+\frac{L^{2}}{2 m r^{2}}+V(r)
$$

Simultaneous observables of $Y_{\ell}^{m}=|\ell, m\rangle$:

$$
\begin{aligned}
L^{2}|\ell, m\rangle & =\hbar^{2} \ell(\ell+1)|\ell, m\rangle \\
L_{z}|\ell, m\rangle & =\hbar m|\ell, m\rangle \\
H|\ell, m\rangle & =E|\ell, m\rangle
\end{aligned}
$$

Raising/lowering operators act on m :
$L_{z}\left(L_{ \pm}|\ell, m\rangle\right)=\hbar(m \pm 1)\left(L_{ \pm}|\ell, m\rangle\right)$
$L^{2}\left(L_{ \pm}|\ell, m\rangle\right)=\hbar^{2} \ell(\ell+1)\left(L_{ \pm}|\ell, m\rangle\right)$
For $\ell=n / 2, m=\{-\ell,-\ell+1, \ldots, \ell-1, \ell\}$
Matrix elements are found as:
$\left\langle\ell, m^{\prime}\right| L_{+}|\ell, m\rangle=\hbar \sqrt{\ell(\ell+1)-m(m+1)} \delta_{m^{\prime}, m+1}$
$\left\langle\ell, m^{\prime}\right| L_{-}|\ell, m\rangle=\hbar \sqrt{\ell(\ell+1)-m(m-1)} \delta_{m, m-1}$
$\left\langle\ell, m^{\prime}\right| L_{z}|\ell, m\rangle=\hbar m \delta_{m^{\prime}, m}$
Ex. m_{1} and m_{2}, separated by r_{0}, and
$\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$, thence $I=\mu r_{0}^{2}$:
$H=\frac{L^{2}}{2 I} \Rightarrow E_{n, \ell}=(n+1 / 2) \hbar \omega+\frac{\ell(\ell+1)}{2 I} \hbar^{2}$
Expectation values, and time evolution may be calculated for a given state.

Physics 115B at UCLA \diamond Formula Sheet (2 of 2)

Spin

Spin is an additional degree of freedom. For two states, it may be expressed as:

$$
|\uparrow\rangle=\left|\frac{1}{2}, \frac{1}{2}\right\rangle \text { and }|\downarrow\rangle=\left|\frac{1}{2},-\frac{1}{2}\right\rangle
$$

(or) $\quad \chi=\binom{a}{b}=a \chi_{+}^{z}+b \chi_{-}^{z}$
Spin operators commute as:

$$
\left[S_{i}, S_{j}\right]=i \hbar S_{k} \epsilon_{i j k}
$$

Eigenvalue relations are just like for L. The spin measurement operators, or the Pauli Matrices are with $\hbar / 2=1$: $S_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), S_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), S_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ Expectation values may be found with:

$$
\left\langle S_{i}\right\rangle=\chi^{\dagger} S_{i} \chi
$$

S_{i} matrices are unitary, so $\left\langle S_{i}^{2}\right\rangle=\hbar^{2} / 4$. The eigenvectors may be set as a basis of eigenvectors of S_{i}, and the probabilities of measurement thence calculated: $\chi_{+}^{y}=\binom{1}{-i}, \chi_{-}^{y}=\binom{1}{i}, \chi_{+}^{x}=\binom{1}{1}, \chi_{-}^{x}=\binom{1}{-1}$

Spins in a Magnetic Field

With magnetic field in $\hat{\boldsymbol{z}}$, spins rotate: $H=-\gamma \boldsymbol{B} \cdot S_{z}$
Spinor states have an energy splitting, and so are time dependent, and rotates at angle α, with frequency $\omega=\gamma\|\boldsymbol{B}\|$:

$$
\chi(t)=\binom{\cos (\alpha / 2) \exp \left(i \gamma B_{0} t / 2\right)}{\sin (\alpha / 2) \exp \left(-i \gamma B_{0} t / 2\right)}
$$

Even an infinitesimal field may flip S :

$$
\left\{\begin{array}{l}
\left\langle S_{x}\right\rangle=\frac{\hbar}{2} \sin (\alpha) \cos (\omega t) \\
\left\langle S_{y}\right\rangle=-\frac{\hbar}{2} \sin (\alpha) \sin (\omega t) \\
\left\langle S_{z}\right\rangle=\frac{\hbar}{2} \cos (\alpha)
\end{array}\right\}
$$

Force arises in an inhomogeneous field and leads to the Stern-Gerlach result.

Adding Angular Momenta

Multiple particles: spin operators act on each particle to yield the usual eigenvalue relations, and $m=m_{1}+m_{2}$.

Two particles: $|\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle,|\downarrow \downarrow\rangle$, so, considering the lowering operator S_{-}, one arrives at "triplets" and "singlets":

$$
\begin{aligned}
& \left\{\begin{array}{ll}
|1,1\rangle & =|\uparrow \uparrow\rangle \\
|1,0\rangle & =\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle) \\
|1,-1\rangle & =|\downarrow \downarrow\rangle
\end{array}\right\} s=1 \\
& \{|0,0\rangle= \\
& \left.=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)\right\} s=0
\end{aligned}
$$

Operators may act on these to yield eigenvalue relations, and determine s.

Electromagnetic Effects

With both electric scalar potential ϕ, and magnetic vector potential \boldsymbol{A}, find:

$$
H=\frac{(\boldsymbol{p}-e \boldsymbol{A})^{2}}{2 m}+q \phi+V(x)
$$

With $\phi=0$, and $\boldsymbol{A}=B / 2 \cdot(-y \hat{\boldsymbol{x}}+x \hat{\boldsymbol{y}})$, the Landau Level quantization arises:

$$
H=\frac{p^{2}}{2 m}+\frac{m \omega_{0}^{2} Q^{2}}{2} ; E=\left(n+\frac{1}{2}\right) \hbar \omega_{0}
$$

Gauge transformation $\boldsymbol{A} \rightarrow \boldsymbol{A}+\nabla \Lambda$, as in AB Effect where a beam is split:

$$
\Psi \rightarrow \Psi e^{i q \Lambda / \hbar} \xrightarrow{\text { Aharonov-Bohm }} \Lambda=\Phi
$$

IDENTICAL PARTICLES

For multiple particles, H generalizes:

$$
H=-\frac{\hbar^{2}}{2 m} \nabla_{1}^{2}-\frac{\hbar^{2}}{2 m} \nabla_{2}^{2}+V\left(r_{1}, r_{2}\right)
$$

Particles are identical in QM, so they cannot be labeled, so two possibilities. Particles with integer spin are bosons, and particles with half-integer spin are fermions. Wave functions follow from a Slater Determinant and Permanent:

$$
\begin{aligned}
\Psi_{F} & =A \operatorname{det}\left|\begin{array}{ll}
\psi_{1}\left(r_{1}\right) & \psi_{2}\left(r_{1}\right) \\
\psi_{1}\left(r_{2}\right) & \psi_{2}\left(r_{2}\right)
\end{array}\right| \\
& =A\left(\psi_{1}\left(r_{1}\right) \psi_{2}\left(r_{2}\right)-\psi_{1}\left(r_{2}\right) \psi_{2}\left(r_{1}\right)\right) \\
\Psi_{B} & =A \operatorname{perm}\left|\begin{array}{ll}
\psi_{1}\left(r_{1}\right) & \psi_{2}\left(r_{1}\right) \\
\psi_{1}\left(r_{2}\right) & \psi_{2}\left(r_{2}\right)
\end{array}\right| \\
& =A\left(\psi_{1}\left(r_{1}\right) \psi_{2}\left(r_{2}\right)+\psi_{1}\left(r_{2}\right) \psi_{2}\left(r_{1}\right)\right)
\end{aligned}
$$

Noting that if $\psi_{1}=\psi_{2}$, then $\Psi=0$, which is the Pauli exclusion principle. Exchange relations then become clear:

$$
\begin{aligned}
& \Psi_{F}\left(r_{1}, r_{2}\right)=-\Psi_{F}\left(r_{2}, r_{1}\right) \\
& \Psi_{B}\left(r_{1}, r_{2}\right)=+\Psi_{B}\left(r_{2}, r_{1}\right)
\end{aligned}
$$

Exchange forces can be calculated, viz, bosons cluster and fermions don't:
$\left\langle\left(x_{1}-x_{2}\right)^{2}\right\rangle_{F}^{B}=\left\langle x^{2}\right\rangle_{1}+\left\langle x^{2}\right\rangle_{2}-2\langle x\rangle_{1}\langle x\rangle_{2} \mp$ exch $\operatorname{exch}=2\left|\int_{x_{1}} \psi_{2}^{*}\left(x_{1}\right) x_{1} \psi_{1}\left(x_{1}\right) \int_{x_{2}} \psi_{1}^{*}\left(x_{2}\right) x_{2} \psi_{2}\left(x_{2}\right)\right|^{2}$

Non-Interacting Particles

For non-interacting particles, one may pretend that they are separate, so that $V\left(r_{1}, r_{2}\right)=V\left(r_{1}\right)+V\left(r_{2}\right)$, so ψ_{1} and ψ_{2} each, fulfill the one-particle S. Eqn, and have total energy of $E=E_{1}+E_{2}$.
Total wave functions are products of the single wave functions. Linearity of $\Psi=\psi_{1} \psi_{2}$, implies entanglement, where a particle's state and another can be linked: measure one get one free!

Free Electron Gas

Begin by assuming that electrons are non-interacting, and that they reside in a periodic solid modeled by an $L \times L \times L$ box with periodic boundaries. If this is the case, then for a single particle solved for by separation of variables, normalized by $A=\sqrt{8 / L^{3}}$, and with wave vectors $k_{i}=n_{i} \pi / L$, for $n_{i} \in \mathbb{N}$: $\psi_{k_{x} k_{y} k_{z}}=A \sin \left(k_{x} x\right) \sin \left(k_{y} y\right) \sin \left(k_{z} z\right)$ Whose energy eigenvalue is evidently:
$E_{k_{x} k_{y} k_{z}}=\frac{\hbar^{2}}{2 m}\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)=\frac{\hbar^{2} \boldsymbol{k} \cdot \boldsymbol{k}}{2 m}$
The highest occupied energy relates to a wave vector k_{F} known as the Fermi radius, which is for N electrons in real volume V, accounting for the 2 spins:
$2 \cdot \frac{4 \pi}{3} k_{\mathrm{F}}^{3}=N\left(\frac{2 \pi}{L}\right)^{3} \Longrightarrow k_{\mathrm{F}}=\left(\frac{3 \pi^{2} N}{V}\right)^{1 / 3}$
Related Fermi quantities are defined:
$p_{\mathrm{F}}=\hbar k_{\mathrm{F}}$
$v_{\mathrm{F}}=p_{\mathrm{F}} / m=\hbar k_{\mathrm{F}} / m \quad \sim 10^{6} \mathrm{~m} / \mathrm{s}$
$\epsilon_{\mathrm{F}}=p_{\mathrm{F}}^{2} / 2 m=\hbar^{2} k_{\mathrm{F}}^{2} / 2 m \quad 1-10 \mathrm{eV}$
$T_{\mathrm{F}}=\epsilon_{\mathrm{F}} / k_{\mathrm{B}}=\hbar^{2} k_{\mathrm{F}}^{2} / 2 m k_{\mathrm{B}} \quad \sim 10^{5} \mathrm{~K}$
The degeneracy pressure is outwards:

$$
P=-\frac{\partial E_{\mathrm{tot}}}{\partial V}=\frac{2}{3} \frac{E_{\mathrm{tot}}}{V}=\frac{2}{3} \frac{\hbar^{2} k_{\mathrm{F}}^{5}}{10 \pi^{2} m}
$$

Kronig-Penney Model

Bloch's Theorem reduces periodic potential problems to solving withing one unit cell. For an a-periodic potential:
$\psi(x+a) e^{i K a}=\psi(x)$, ring: $\psi(x) e^{i N K a}=\psi(x)$
The KP Model assumes a potential:

$$
V(x)=\alpha \sum_{j=0}^{N-1} \delta(x-j a)
$$

The general solution in the free region:

$$
\psi(x)=A \sin (k x)+B \cos (k x)
$$

With Bloch's Theorem and boundaries:

$$
\cos (q a)=\cos (k a)+\frac{m \alpha}{\hbar^{2} k} \sin (k a)
$$

Non-dimensional consistency relation:

$$
f(z) \equiv \cos (z)+\beta \operatorname{sinc}(z)
$$

For negative energies and z, one finds:

$$
f(z) \equiv \cosh (z)+\beta \operatorname{sinhc}(z)
$$

This is a quantitative description of bands and gaps in an energy spectrum. There are N states between $z= \pm 1$, which effectively form a continuum.

