THREE DIMENSIONAL QM

The TISE still holds as $H\psi = E\psi$, and the extension from 1D to 3D follows:

$$\begin{aligned} x \implies x, y, z \iff r, \theta, \varphi & \neg \\ \psi(x) \implies \psi(x, y, z) \iff \psi(r, \theta, \varphi) & \neg \\ V(x) \implies V(x, y, z) \iff V(r, \theta, \varphi) & \neg \\ p = -i\hbar \frac{\partial}{\partial x} |\psi\rangle \, \hat{x} \implies p = -i\hbar \nabla |\psi\rangle \\ \Psi_n(x, t) \implies \Psi_n(\mathbf{r}, t) = \psi_n(\mathbf{r}) e^{-iE_n t/\hbar} & \neg \end{aligned}$$

PARTICLE IN A BOX

Assume separable $\psi = X(x) Y(y) Z(z)$, which for a free particle becomes:

 $\frac{1}{X}\frac{d^{2}X}{dx^{2}} + \frac{1}{Y}\frac{d^{2}Y}{dy^{2}} + \frac{1}{Z}\frac{d^{2}Z}{dz^{2}} = -\frac{2mE}{\hbar^{2}}$ The solutions are sines and cosines of wavenumber k_i , where the energy is:

$$E = \frac{\hbar^2}{2m} (k_x^2 + k_y^2 + k_z^2)$$

Box of size a^3 at the origin removes cos terms, so wave function for $A_i = \sqrt{2/a}$:

$$\psi(x, y, z) = \prod_{i=1}^{3} A_i \sin\left(\frac{n_i \pi}{a} x_i\right)$$

Spherical Schrödinger Eq

Hamiltonian is chosen as $H=p^2/2m+V$. The Laplacian in spherical coordinates: $\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \left(\frac{\partial^2}{\partial \varphi^2} \right)$ With potential V(r), the Schrödinger equation is then solved by separation of variables and power series expansion:

- Separate $\psi(r, \theta, \varphi) = R(r)Y(\theta, \varphi)$
- Substitute, divide, and cancel
- Separate variables (equate to 0) • Set equal to $\pm \ell(\ell+1)$
- Separate $Y(\theta, \varphi) = \Theta(\theta) \Phi(\varphi)$
- Substitute, divide, and cancel
- Separate variables (equate to 0) • Set equal to $\pm m^2$
- Solve for Φ with sep. of variables
- Solve for Θ with power series
- Solve for *R* with power series for a specific potential energy V(r)• Multiply $\psi = R(r) \Theta(\theta) \Phi(\varphi)$

The solutions
$$Y(\theta, \varphi) = \Theta(\theta) \Phi(\varphi)$$
 are spherical harmonics for integers $|m| \leq l$:

$$Y_l^m = \sqrt{\frac{(2l+1)}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}} e^{im\varphi} P_l^m(\cos\theta)$$

 P_l^m is the associated Legendre function for $\epsilon = -1^m$ for 0 < m and 1 otherwise:

$$P_l^m = \epsilon \frac{(1-x^2)^{|m|/2}}{2^l l!} \left(\frac{d}{dx}\right)^{l+|m|} (x^2-1)^l$$

INFINITE SPHERICAL WELL

 $\psi_{n,0,0} = \frac{1}{\sqrt{2\pi a}r}; E_{n,0} = \frac{1}{2ma^2}$ R, with spherical Bessel functions j_{ℓ} :

$$R(r) = A j_{\ell}(kr)$$

The spherical Bessel functions are:

$$j_{\ell}(x) = (-x)^{\ell} \left(\frac{1}{x}\frac{d}{dx}\right)^{\ell} \frac{\sin(x)}{x}$$

The Bessel functions have multiple (∞) zeros, $\beta_{n\ell}$, where $k = \beta_{n\ell}/a$, and so: $\psi_{n,\ell,m} = A_{n\ell} j_{\ell} (\beta_{n\ell} r/a) Y_{\ell}^{m}; E_{n,\ell} = \frac{\hbar^2 \beta_{n\ell}^2}{2ma^2}$

The Hydrogen Atom

For the Hydrogen atom, the potential is:

$$V(r) = -\frac{1}{4\pi\epsilon_0} \cdot \frac{e^2}{r}$$

= $-\frac{e^2}{r}$ (CGS)

Bound states are found from solving the radial equation for u = rR with $\kappa = \sqrt{-2mE/\hbar^2}, \rho = \kappa r, \rho_0 = 2me^2/\hbar^2\kappa$: $\frac{d^2u}{d\rho^2} = \left(1 - \frac{\rho_0}{\rho} + \frac{\ell(\ell+1)}{\rho^2}\right)u$

Using limits of ρ large and small, guess:

$$u(\rho) = \rho^{\ell+1} e^{-\rho} v(\rho)$$
 for some $v(\rho)$

Guess the power series ansatz:

$$v(\rho) = \sum_{j=0}^{\infty} a_j \rho^j$$

Plugging into the ODE and solving, the solutions blow up unless series ends at n:

$$a_{j+1} = \frac{2(j+\ell+1-n)}{(j+1)(j+2\ell+2)}a_j$$

End is from $\rho_0 = 2n$, which sets E as:

$$E_n = -\frac{1}{n^2} \left(\frac{me^4}{2\hbar^2}\right) = \frac{E_1}{n^2} = -\frac{13.61}{n^2} e^{-\frac{13.61}{n^2}}$$
The ground state energy is not at $-\infty$

) because of the uncertainty principle.

The Bohr Radius, of state
$$E_1$$
 is

$$a = \frac{h^2}{me^2} = 0.529 \text{ Å}$$

Quantum numbers $|m| \le l \le n-1$.

Angular Momentum

Radial momentum is, from $L = r \times p$: $p_r = \frac{1}{2} \left(\frac{1}{r} r \cdot p + p \cdot r \frac{1}{r} \right) = \frac{\hbar}{i} \frac{1}{r} \frac{\partial}{\partial r} r$ Some angular momentum operators: $L_z = xp_y - yp_z$ $L_{\pm} = L_x \pm iL_y$ $L^2 = L_x^2 + L_y^2 + L_z^2$ $= L_{\pm}L_{\mp} + L_z^2 \mp \hbar L_z$ Their representations as operators: $L_z = \frac{\hbar}{i} \frac{\partial}{\partial \varphi}$ $L_{\pm} = \pm \hbar e^{\pm i\varphi} \left(\frac{\partial}{\partial \theta} \pm i \cot(\theta) \frac{\partial}{\partial \omega} \right)$ $L^{2} = -\hbar^{2} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}} \right)$ Commutator identities: $[A, B] \equiv AB - BA$ [A, B] = -[B, A][A, B-C] = [A, B] - [A, C][A, BC] = [A, B]C + B[A, C]These commutation relations hold: $[L_i, L_j] = \varepsilon_{ijk} i\hbar L_k$ $[L_z, L_{\pm}] = \pm \hbar L_{\pm}$ $[L_i, L^2] = 0$ $[L_{\pm}, L_{\mp}] = \pm 2\hbar L_z$ $[L_{\pm}, L^2] = 0$ Hamiltonian for a central potential: $H = \frac{p_r^2}{2m} + \frac{L^2}{2mr^2} + V(r)$ Simultaneous observables of $Y_{\ell}^m = |\ell, m\rangle$: $L^2|\ell,m\rangle = \hbar^2 \ell (\ell+1)|\ell,m\rangle$ $L_z|\ell,m\rangle = \hbar m |\ell,m\rangle$ $H|\ell,m\rangle = E|\ell,m\rangle$ Raising/lowering operators act on m: $L_z(L_{\pm}|\ell,m\rangle) = \hbar(m\pm 1)(L_{\pm}|\ell,m\rangle)$ $L^{2}(L_{+}|\ell,m\rangle) = \hbar^{2}\ell(\ell+1)(L_{+}|\ell,m\rangle)$ For $\ell = n/2$, $m = \{-\ell, -\ell+1, \dots, \ell-1, \ell\}$ Matrix elements are found as: $\langle \ell, m' | L_+ | \ell, m \rangle = \hbar \sqrt{\ell(\ell+1) - m(m+1)} \delta_{m',m+1}$ $\langle \ell, m' | L_{-} | \ell, m \rangle = \hbar \sqrt{\ell (\ell + 1) - m (m - 1)} \delta_{m', m - 1}$

 $\langle \ell, m' | L_z | \ell, m \rangle = \hbar m \delta_{m', m}$ Ex. m_1 and m_2 , separated by r_0 , and

$$\begin{split} & \mu = m_1 m_2 / (m_1 + m_2), \text{ thence } I = \mu r_0^2: \\ & H = \frac{L^2}{2I} \Rightarrow E_{n,\ell} = (n + 1/2) \hbar \omega + \frac{\ell(\ell + 1)}{2I} \hbar^2 \end{split}$$

Expectation values, and time evolution may be calculated for a given state.

Spenser Talkington \triangleleft spenser.science \triangleright Winter 2019

Spin

Spin is an additional degree of freedom. For two states, it may be expressed as: $|\uparrow\rangle = |\uparrow\rangle = |\uparrow\rangle = |\uparrow\rangle = |\uparrow\rangle$

$$|\uparrow\rangle = |\frac{1}{2}, \frac{1}{2}\rangle \text{ and } |\downarrow\rangle = |\frac{1}{2}, -\frac{1}{2}\rangle$$

(or) $\chi = \begin{pmatrix} a \\ b \end{pmatrix} = a\chi_+^z + b\chi_-^z$

Spin operators commute as: $[S_i, S_j] = i\hbar S_k \epsilon_{ijk}$

Eigenvalue relations are just like for L.

The spin measurement operators, or the Pauli Matrices are with $\hbar/2 = 1$: $S_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, S_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, S_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ Expectation values may be found with:

Expectation values may be found with $\langle S_i \rangle = \chi^{\dagger} S_i \chi$

 S_i matrices are unitary, so $\langle S_i^2 \rangle = \hbar^2/4$. The eigenvectors may be set as a basis of eigenvectors of S_i , and the probabilities of measurement thence calculated: $\chi^y_+ = \begin{pmatrix} 1 \\ -i \end{pmatrix}, \chi^y_- = \begin{pmatrix} 1 \\ i \end{pmatrix}, \chi^x_+ = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \chi^x_- = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Spins in a Magnetic Field

With magnetic field in \hat{z} , spins rotate: $H = -\gamma \boldsymbol{B} \cdot S_z$

Spinor states have an energy splitting, and so are time dependent, and rotates at angle α , with frequency $\omega = \gamma \|\boldsymbol{B}\|$:

$$\chi(t) = \begin{pmatrix} \cos(\alpha/2) \exp(i\gamma B_0 t/2) \\ \sin(\alpha/2) \exp(-i\gamma B_0 t/2) \end{pmatrix}$$

Even an infinitesimal field may flip S:

$$\begin{cases} \langle S_x \rangle = \frac{\hbar}{2} \sin(\alpha) \cos(\omega t) \\ \langle S_y \rangle = -\frac{\hbar}{2} \sin(\alpha) \sin(\omega t) \\ \langle S_z \rangle = \frac{\hbar}{2} \cos(\alpha) \end{cases} \end{cases}$$

Force arises in an inhomogeneous field and leads to the Stern-Gerlach result.

Adding Angular Momenta

Multiple particles: spin operators act on each particle to yield the usual eigenvalue relations, and $m = m_1 + m_2$.

Two particles: $|\uparrow\uparrow\rangle$, $|\uparrow\downarrow\rangle$, $|\downarrow\uparrow\rangle$, $|\downarrow\downarrow\rangle$, so, considering the lowering operator S_{-} , one arrives at "triplets" and "singlets":

$$\begin{cases} |1,1\rangle &=|\uparrow\uparrow\rangle\\ |1,0\rangle &=\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle)\\ |1,-1\rangle &=|\downarrow\downarrow\rangle\\ \\ \left\{|0,0\rangle &=\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle)\right\}s=0 \end{cases}$$

Operators may act on these to yield eigenvalue relations, and determine *s*.

Electromagnetic Effects

With both electric scalar potential ϕ , and magnetic vector potential \boldsymbol{A} , find:

$$H = \frac{(\boldsymbol{p} - e\boldsymbol{A})^2}{2m} + q\phi + V(x)$$

With $\phi = 0$, and $\mathbf{A} = B/2 \cdot (-y\hat{\mathbf{x}} + x\hat{\mathbf{y}})$, the Landau Level quantization arises:

$$\begin{split} H &= \frac{p^2}{2m} + \frac{m\omega_0^2 Q^2}{2}; \ E &= (n + \frac{1}{2})\hbar\omega_0\\ \text{Gauge transformation } \mathbf{A} \to \mathbf{A} + \nabla\Lambda,\\ \text{as in AB Effect where a beam is split:}\\ \Psi \to \Psi e^{iq\Lambda/\hbar} \xrightarrow{\text{Aharonov-Bohm}} \Lambda = \Phi \end{split}$$

IDENTICAL PARTICLES

For multiple particles, H generalizes: $H = -\frac{\hbar^2}{2m} \nabla_1^2 - \frac{\hbar^2}{2m} \nabla_2^2 + V(r_1, r_2)$ Particles are identical in QM, so they

Particles are identical in QM, so they cannot be labeled, so two possibilities. Particles with integer spin are bosons, and particles with half-integer spin are fermions. Wave functions follow from a Slater Determinant and Permanent:

$$\begin{split} \Psi_F &= A \, \det \begin{vmatrix} \psi_1(r_1) & \psi_2(r_1) \\ \psi_1(r_2) & \psi_2(r_2) \end{vmatrix} \\ &= A(\psi_1(r_1)\psi_2(r_2) - \psi_1(r_2)\psi_2(r_1)) \\ \Psi_B &= A \, \operatorname{perm} \begin{vmatrix} \psi_1(r_1) & \psi_2(r_1) \\ \psi_1(r_2) & \psi_2(r_2) \end{vmatrix} \\ &= A(\psi_1(r_1)\psi_2(r_2) + \psi_1(r_2)\psi_2(r_1)) \end{split}$$

Noting that if $\psi_1 = \psi_2$, then $\Psi = 0$, which is the Pauli exclusion principle. Exchange relations then become clear:

$$\Psi_F(r_1, r_2) = -\Psi_F(r_2, r_1)$$

$$\Psi_B(r_1, r_2) = +\Psi_B(r_2, r_1)$$

Exchange forces can be calculated, viz, bosons cluster and fermions don't:

$$\begin{split} \langle (x_1 - x_2)^2 \rangle_F^B &= \langle x^2 \rangle_1 + \langle x^2 \rangle_2 - 2 \langle x \rangle_1 \langle x \rangle_2 \mp \text{exch} \\ \text{exch} &= 2 \left| \int_{x_1} \psi_2^*(x_1) x_1 \psi_1(x_1) \int_{x_2} \psi_1^*(x_2) x_2 \psi_2(x_2) \right|^2 \end{split}$$

NON-INTERACTING PARTICLES

For non-interacting particles, one may pretend that they are separate, so that $V(r_1, r_2) = V(r_1) + V(r_2)$, so ψ_1 and ψ_2 each, fulfill the one-particle S. Eqn, and have total energy of $E = E_1 + E_2$.

Total wave functions are products of the single wave functions. Linearity of $\Psi = \psi_1 \psi_2$, implies entanglement, where a particle's state and another can be linked: measure one get one free!

FREE ELECTRON GAS

Begin by assuming that electrons are non-interacting, and that they reside in a periodic solid modeled by an $L \times L \times L$ box with periodic boundaries. If this is the case, then for a single particle solved for by separation of variables, normalized by $A = \sqrt{8/L^3}$, and with wave vectors $k_i = n_i \pi/L$, for $n_i \in \mathbb{N}$: $\psi_{k_x k_y k_z} = A \sin(k_x x) \sin(k_y y) \sin(k_z z)$ Whose energy eigenvalue is evidently:

 $E_{k+1} = \frac{\hbar^2}{\hbar^2} (k^2 + k^2 + k^2) - \frac{\hbar^2 \mathbf{k} \cdot \mathbf{k}}{\hbar^2}$

$$E_{k_x k_y k_z} = \frac{n}{2m} (k_x^2 + k_y^2 + k_z^2) = \frac{n}{2m} \frac{$$

The highest occupied energy relates to a wave vector $k_{\rm F}$ known as the Fermi radius, which is for N electrons in real volume V, accounting for the 2 spins:

$$2 \cdot \frac{4\pi}{3} k_{\rm F}^3 = N \left(\frac{2\pi}{L}\right)^3 \Longrightarrow k_{\rm F} = \left(\frac{3\pi^2 N}{V}\right)^{1/3}$$

Related Fermi quantities are defined: $p_{\rm F} = \hbar k_{\rm F}$

$$v_{\rm F} = p_{\rm F}/m = \hbar k_{\rm F}/m \sim 10^6 {\rm m/s}$$

$$\epsilon_{\rm F} = p_{\rm F}^2 / 2m = \hbar^2 k_{\rm F}^2 / 2m \qquad 1 - 10 \ {\rm eV}$$

$$T_{\rm F} = \epsilon_{\rm F}/k_{\rm B} = \hbar^2 k_{\rm F}^2/2mk_{\rm B} \qquad \sim 10^5 \ {\rm K}$$

The degeneracy pressure is outwards:

$$P = -\frac{\partial E_{\text{tot}}}{\partial V} = \frac{2}{3} \frac{E_{\text{tot}}}{V} = \frac{2}{3} \frac{\hbar^2 k_{\text{F}}^5}{10\pi^2 m}$$

KRONIG-PENNEY MODEL

Bloch's Theorem reduces periodic potential problems to solving withing one unit cell. For an a-periodic potential:

$$\psi(x+a)e^{iKa} = \psi(x), \text{ ring: } \psi(x)e^{iNKa} = \psi(x)$$

The KP Model assumes a potential:

$$V(x) = \alpha \sum_{j=0}^{N-1} \delta(x - ja)$$

The general solution in the free region: $\psi(x) = A\sin(kx) + B\cos(kx)$

With Bloch's Theorem and boundaries: $m\alpha$

$$\cos(qa) = \cos(ka) + \frac{1}{\hbar^2 k}\sin(ka)$$

Non-dimensional consistency relation:

$$f(z) \equiv \cos(z) + \beta \operatorname{sinc}(z)$$

For negative energies and z, one finds:

 $f(z) \equiv \cosh(z) + \beta \operatorname{sinhc}(z)$

This is a quantitative description of bands and gaps in an energy spectrum. There are N states between $z = \pm 1$, which effectively form a continuum.